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Abstract: In this paper, we consider the relative rigid body motion control problem with manip-
ulator dynamics using visual information. Firstly the model of the relative rigid body motion and
nonlinear observer are described in order to derive the dynamic visual feedback system. Secondly
we propose the dynamic visual feedback control law which is based on passivity. Local asymptotic
stability of the overall closed-loop system and L2-gain performance analysis for the proposed con-
trol law are discussed using the energy function. Finally experimental results on SICE{DD arm
are reported to con�rm the e�ectiveness of the visual feedback control control law.
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1. Introduction

Vision based control of robotic systems involves the fu-
sion of robot kinematics, dynamics, and computer vi-
sion system to control the position of the robot end-
e�ector in an eÆcient manner. The combination of
mechanical control with visual information, so-called
visual feedback control or visual servo, should become
extremely important, when we consider a mechani-
cal system working under dynamical environments1, 2).
Recently, autonomous injection of biological cells has
been discussed using visual feedback control3) and �elds
which need visual feedback control are increasing.
This paper deals with a robot motion control with

visual information in the eye-in-hand con�guration as
depicted in Fig. 2. Classical visual servoing algorithms
assume that the manipulator dynamics is negligible and
do not interact with the visual feedback loop. However,
this assumption is invalid for high speed tasks, while it
holds for kinematic control problems4).
In this paper, we discuss dynamic visual feedback

control for the Eye-in-hand visual feedback system with
robot manipulator depicted in Fig. 1. The main contri-
bution of this paper is that dynamic visual feedback
system with SICE{DD arm5) is constructed in order to
con�rm the e�ectiveness of our researches6, 7).
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Figure 1: Eye-in-hand Visual Feedback System.

2. Modeling

2.1 Relative Rigid Body Motion Model

We consider the eye-in-hand system1) depicted in Fig.
1, where the coordinate frame �w represents the world
frame, �c represents the camera (end-e�ector) frame,
and �o represents the object frame, respectively. Let
pco 2 R3 and Rco 2 R3�3 denote the position vec-
tor and the rotation matrix from the camera frame
�c to the object frame �o. Then, the relative rigid
body motion from �c to �o can be represented by
(pco; Rco) 2 SE(3). Similarly, we will de�ne the rigid
body motion (pwc; Rwc) from �w to �c, and (pwo; Rwo)
from �w to �o, respectively, as in Fig. 1.
The objective of the visual feedback control is to bring

the actual relative rigid body motion (pco; Rco) to a
given reference (pd; Rd) (see, e.g. reference

1)). Our goal
is to determine the camera's motion via the visual in-
formation for this purpose. The reference (pd; Rd) for
the rigid motion (pco; Rco) is assumed to be constant in
the paper.
In this subsection, let us derive a model of the relative

rigid body motion. The rigid body motion (pwo; Rwo)
of the target object, relative to the world frame �w, is
given by

pco = RT
wc(pwo � pwc) (1)

Rco = RT
wcRwo: (2)

The dynamic model of the relative rigid body motion
involves the velocity of each rigid body. To this aid, let
us consider the velocity of a rigid body as described in
reference8). Let !̂wc and !̂wo denote the instantaneous
body angular velocities from �w to �c, and from �w to
�o, respectively. Here `^' (wedge) is the operator from
R3 to the set of 3 � 3 skew-symmetric matrices so(3)
8) (Chap.2, eq.(2.4)). The operator `_' (vee) denotes
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Figure 2: Pinhole camera

the inverse operator to `^': i.e., so(3) ! R3. Recall
that a skew-symmetric matrix corresponds to an axis
of rotation (via the mapping a 7! â). With these, it is
possible to specify the velocities of each rigid body as
follows8) (Chap.2, eq.(2.55)).

_pwc = Rwcvwc; _Rwc = Rwc!̂wc (3)

_pwo = Rwovwo; _Rwo = Rwo!̂wo: (4)

Di�erentiating (1) and (2) with respect to time, we
can obtain

_pco = �vwc + p̂co!wc +Rcovwo (5)
_Rco = �!̂wcRco +Rco!̂wo: (6)

Now, let us denote the body velocity of the camera rel-
ative to the world frame �w as Vwc := [vTwc !

T
wc]

T . Fur-
ther, the body velocity of the target object relative to
�w should be denoted as Vwo := [vTwo !

T
wo]

T . Then we
can rearrange the above eqs. (5) and (6) in a matrix
form as follows7).�

_p

( _RRT )_

�
=

�
�I p̂

0 �I

�
Vwc +

�
R 0
0 R

�
Vwo: (7)

Here (p;R) denotes (pco; Rco) for short. The eq. (7)
should be the model of the relative rigid body motion.
Next let us derive a model of a pinhole camera as

shown in Fig. 2. Let � be a focal length. Let poi and pci
be coordinates of the target object's i-th feature point
relative to �o and �c, respectively. Using a transforma-
tion of the coordinates, we have

pci = p+Rpoi: (8)

The perspective projection of the i-th feature point onto
the image plane gives us the image plane coordinate fi
as follows.

fi =
�

zci

�
xci
yci

�
(9)

where pci := [xci yci zci]
T .

2.2 Observer Model

The visual feedback control task should require informa-
tion of the relative rigid body motion (p;R). However,

the measurable information is only the one of image in
the visual feedback systems. Hence, we consider a non-
linear observer which estimates the relative rigid body
motion using information of the image.
First, we shall consider the following dynamic model

which just comes from the actual relative rigid body
motion model (7).

�
_�p

( _�R �RT )_

�
=

�
�I �̂p
0 �I

�
Vwc +

�
�R 0
0 �R

�
ue (10)

where (�p; �R) is the estimated value of the relative rigid
body motion. The new input ue is to be determined
in order to converge the estimated value to the actual
relative rigid body motion. Based on the structures of
(8)(9), the estimated image information �fi are described
as follows

�fi =
�

�zci

�
�xci
�yci

�
: (11)

Now, we de�ne the estimation error between the esti-
mated value (�p; �R) and the actual relative rigid motion
(p;R) as

(pee; Ree) := ( �RT (p� �p); �RTR): (12)

Note that, if p = �p and R = �R, then it follows pee = 0
and Ree = I . Let

eR(R) :=
1

2
(R�RT )_ (13)

represent an error vector of the rotation matrix R. Us-
ing the notation eR(R), the vector of the estimation
error is given by

ee :=
�
pTee eTR(Ree)

�T
: (14)

It should be noted that ee = 0 provided pee = 0 and
Ree = I .
Next, we will derive a relation between the image

information from the camera and the estimated image
information. It is straightforward to extend the image
information fi, �fi to the m image points case by sim-
ply stacking the vectors of the image plane coordinate,
i.e. f := [fT1 � � � fTm]

T 2 R2m, �f := [ �fT1 � � � �fTm]
T 2

R2m. Then, the relation between f and �f is derived as
follows7).

f � �f = J(�g)ee (15)

where

J(�g) :=

2
64

J1(�g)
...

Jm(�g)

3
75 � �R 0

0 �R

�
(16)

Ji(�g) :=

"
�
�zci

0 ���xci
�z2
ci

0 �
�zci

���yci
�z2
ci

# �
I �( �Rpoi)

^
�

i = 1; � � � ;m:



If J(�g) hold a full column rank, then the pseudo-inverse
matrix J(�g)y exists and the following relation holds.

J(�g)y(f � �f) = ee: (17)

We consider the state equation of the estimated rela-
tive rigid body motion error. Using (7), (10) and (12),
the state equation of the estimated RRBM error can be
obtained as follows.�

_pee
( _ReeR

T
ee)

_

�
=

�
�I p̂ee
0 �I

�
ue +

�
Ree 0
0 Ree

�
Vwo: (18)

Since the camera velocity Vwc is considered as an input,
the notation uc is used instead of Vwc.

2.3 Visual Feedback System

Let us derive a model of the visual feedback system.
First, we de�ne the relative rigid body motion error
which represents the error between the estimated value
(�p; �R) and the reference of the relative rigid body motion
(pd; Rd) as follows.

(pec; Rec) := (RT
d (�p� pd); R

T
d
�R) (19)

It should be remarked that pd = �p and Rd = �R i�
pec = 0 and Rec = I .
Using the notation eR(R), the vector of the RRBM

error is de�ned as

ec :=
�
pTec eTR(Rec)

�T
: (20)

Note that ec = 0 i� pec = 0 and Rec = I .
From (10) and (19), the state equation of the RRBM

error can be given by�
_pec

( _RecR
T
ec)

_

�
=

�
�RT

d RT
d �̂p

0 �RT
d

�
uc +

�
Rec 0
0 Rec

�
ue:(21)

Using (18) and (21), the state equation of the visual
feedback system can be derived as2
664

_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775 =

�
�RT

1 B
T (�p) R2

0 �BT (pee)

��
uc
ue

�

+

�
0
R3

�
Vwo (22)

where R1 := diagfRd; Rdg, R2 := diagfRec; Recg,
R3 := diagfRee; Reeg and

B(a) =

�
I 0
â I

�
; 8a 2 R3:

Let us de�ne the error vector of the visual feedback
system as

e :=
�
eTc eTe

�T
(23)

which consists of the RRBM error vector ec and the
estimated RRBM error vector ee. It should be noted
that the actual relative rigid body motion (p;R) tends
to the reference (pd; Rd) when e! 0.

Lemma 1 7) If Vwo = 0 and e(0) = 0, then the system
(22) satis�es Z T

0

uTce�ced� � 0; 8T > 0 (24)

where uce := [uTc uTe ]
T and �ce is

�ce :=

�
�B(pd)R1 0

RT
2 �I

�
e: (25)

(Proof) Consider the following positive de�nite func-
tion

W =
1

2
kpeck

2 + �(Rec) +
1

2
kpeek

2 + �(Ree) (26)

where � is the error function of the rotation matrix. Let
us introduce the notation of the error function

�(R) :=
1

2
tr(I �R): (27)

The error function � has the following properties.9)

(1) �(R) = �(RT ) � 0 and �(R) = 0 i� R = I:

(2) _�(R) = eTR(R)(R
T _R)_ = eTR(R)(

_RRT )_:

The positive de�niteness of the function W can be
given by the property of the error function �. Di�eren-
tiating (26) with respect to time yields

_W = eT

2
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_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775

= eT
�
�RT

1 B
T (�p) R2

0 �BT (pee)

�
uce: (28)

Observing that the skew-symmetry of the matrices p̂ec
and p̂ee, i.e. p

T
ecp̂ec!wc = �pTec!̂wcpec = 0 and pTeep̂ee!wc

= �pTee!̂wcpee = 0, the above equation along the tra-
jectories of the system (22) can be transformed into

_W = eT
�
�RT

1 B
T (pd) R2

0 �I

�
uce

= uTce�ce: (29)

Integrating (29) from 0 to T , we can obtainZ T

0

uTce�ced� =W (e(T ))�W (e(0)) � 0: (30)

This completes the proof. 2

In the visual feedback system (22), pTec!̂wcpec = 0
and pTee!̂wcpee = 0 hold. This property is analogous
to the one of the robot dynamics, i.e. xT ( _M � 2C)x =
0; 8x 2 Rm (where M 2 Rn�n is the manipulator
inertia matrix and C 2 Rn�n is the Coriolis matrix8)).
Moreover, let us take uce as the input and �ce as its
output. Then, Lemma 1 would suggest that the system
(22) is passive from the input uce to the output �ce just
formally as in the de�nition in the reference10). Fig. 3
shows a block diagram of the visual feedback system.
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Figure 3: Block diagram of visual feedback system.

2.4 Dynamic Visual Feedback System

The manipulator dynamics can be written as

M(q)�q + C(q; _q) _q + g(q) = � (31)

where q, _q and �q are the joint angles, velocities and
accelerations, respectively. � is the vector of the input
torques.
Here we propose the control law as the input torques

for the dynamic visual feedback system as follows.

� =M(q)�qd + C(q; _q) _qd + g(q)

+JTb (q)B(pd)R1ec + u� (32)

where _qd and �qd are references of joint velocities and ac-
celerations, respectively. Jb(q) is the manipulator body
Jacobian8) and the new input u� is to be determined in
order to achieve the control objectives.
Let us de�ne the error vector with respect to the joint

velocities of the manipulator dynamics as � := _q � _qd.
Here we consider the error dynamics of the manipulator.
Substituting (32) into (31) yields

M(q) _� = �C(q; _q)� + JTb (q)B(pd)R1ec + u�: (33)

Since the camera is mounted on the end-e�ector of
the manipulator in the eye-in-hand con�guration, the
body velocity of the camera Vwc is given by

Vwc = Jb(q) _q: (34)

Similarly, let ud represent a reference of the velocity of
the end-e�ector, then ud = Jb(q) _qd holds.
Using eqs. (22), (33) and (34), the state equation of

the dynamic visual feedback system can be derived as

M(q) _� = �C(q; _q)� + JTb (q)B(pd)R1ec + u� (35)2
664

_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775 =

�
�RT

1 B
T (�p)

0

�
Jb(q)� +

�
0
R3

�
Vwo

+

�
�RT

1 B
T (�p) R2

0 �BT (pee)

��
ud
ue

�
:(36)

Let us de�ne the error vector of the dynamic visual
feedback system as

x :=
�
�T eT

�T
(37)

which consists of the error vector of the joint velocities
� and the error vector of the visual feedback system e.

3. Dynamic Visual Feedback Con-

trol

In this section, we propose the dynamic visual feedback
control law which guarantees local asymptotic stability
of the overall closed-loop system. Before deriving the
control law, we show an important lemma.

Lemma 2 If Vwo = 0 and x(0) = 0, then the system
(35)(36) satis�es

Z T

0

uT �d� � 0; 8T > 0 (38)

where u := [uT� uTd uTe ]
T and � is

� :=

2
4 I 0 0

0 �B(pd)R1 0
0 RT

2 �I

3
5x: (39)

(Proof) Consider the following positive de�nite func-
tion

V =
1

2
�TM� +

1

2
kpeck

2 + �(Rec)

+
1

2
kpeek

2 + �(Ree): (40)

Di�erentiating (40) with respect to time yields

_V = �TM _� +
1

2
�T _M� + eT

2
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_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775 (41)

Observing that the skew-symmetry of the matrices
_M�2C, p̂ec and p̂ee, i.e. �

T ( _M�2C)� = 0, pTecp̂ec!wc =
�pTec!̂wcpec = 0 and pTeep̂ee!wc = �pTee!̂wcpee = 0,
the above equation along the trajectories of the system
(35)(36) can be transformed into

_V = �Tu� + eT
�
�RT

1 B
T (pd) R2

0 �I

� �
ud
ue

�
= uT �:(42)

Integrating (42) from 0 to T , we can obtain

Z T

0

uT �d� = V (x(T )) � V (x(0)) � 0: (43)

This completes the proof. 2

Fig. 4 shows a block diagram of the dynamic visual feed-
back system.
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Figure 4: Block diagram of dynamic visual feedback
system.
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Figure 5: Block diagram of dynamic visual feedback
control.

It is well known that there is a direct link between
passivity and Lyapunov stability. Thus, we propose the
following control input.

u = �

2
4 K� 0 0

0 Kc 0
0 0 Ke

3
5 � (44)

where K� is n � n positive de�nite matrix, Kc and Ke

are 6� 6 positive de�nite matrices.
The result with respect to asymptotic stability of the

proposed control input (44) can be established as fol-
lows.

Theorem 1 6) If Vwo = 0, then the equilibrium point
x = 0 for the closed-loop system (35)(36) and (44) is
asymptotically stable.

(Proof) See the reference6). 2

The block diagram of the dynamic visual feedback con-
trol is shown in Fig. 5.
We consider L2-gain performance analysis of the vi-

sual feedback system. Now, let us de�ne

P := K� �
1

2
I; Q := Kce �

1

2

�
I 0
0 (1 + 1


2
)I

�

where 
 2 R is positive and

Kce :=

�
�RT

1 B
T (pd) R2

0 �I

� �
Kc 0
0 Ke

� �
�B(pd)R1 0

RT
2 �I

�
:

Then we have the following theorem.

Theorem 2 6) Given a positive scalar 
 and consider
the control input (44) with the gains K�, Kc and Ke

such that the matrices P and Q are positive semi-
de�nite, then the closed-loop system (35), (36) and (44)
has L2-gain � 
.

(Proof) See the reference6). 2

Lemma 2 can be interpreted as follows. The dynamic
visual feedback system (35) (36) is passive from the in-
put u to the output � just formally as in the de�nition in
the reference10). The positive de�nite function V plays
the role of a Lyapunov function and a storage function
in Theorem 1 and 2, respectively.
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Figure 6: Experimental Arm.

4. Experimental Case Study

The manipulator use in the study, known as SICE{DD
arm (see Fig. 6), is controlled by a digital signal proces-
sor(DSP) from dSPACE Inc., which utilizes a powerPC
750 running at 480 MHz. Control programs are written
in MATLAB and SIMULINK, and implemented on the
DSP using the Real{Time Workshop and dSPACE Soft-
ware which includes ControlDesk, Real{Time Interface
and so on. A PULNiX TM-7EX camera was attached
at the arm tip. The video signals is acquired by a frame
graver board PicPort{Stereo{H4D and a image process-
ing software HALCON.
We de�ned the three coordinates which were de-

scribed in Fig. 6. Let the target object have four feature
points which are projected on the display and move as
the following:

Translation : (0 � t � 8)

x = 0:47[m]; y = 0:1 � �0:044[m]; z = �0:90[m]

Rotation : (0 � t � 8)

x = 0Æ; y = 0Æ; z = 0Æ � �20Æ

The experimental tests were carried out with the
following initial con�guration: ec(0) = ee(0) = 0,
q1(0) = 30Æ, q2(0) = �30Æ, and _q1(0) = _q2(0) = 0.
In this study, we set a reference of position and rota-
tion as pd = [0 0 �0:9]T , Rd = I . Then, we would like
to bring the actual relative rigid body motion (p;R) to
the reference (pd; Rd).
Control gain of the manipulator is chosen as K� =

diagf10; 5g and gains Kc and Ke are chosen as follows

Gain A : Kc = diagf12; 12; 8; 8; 8; 12g; Ke = 6I

Gain B : Kc = diagf30; 30; 20; 20; 20; 30g; Ke = 30I:

The closed-loop (35)(36) and (44) with gain A has 
 =
0:522 and gain B has 
 = 0:264.
Fig. 7 and 8 present the control error vectors ec and

the estimation error vectors ee, top graph, middle one
and bottom one shows the error of translation of x, the
error of translation of y and the error of rotation of z,
respectively. In these �gures, dashed lines denote the
error of a case of gain A and solid lines denote the error
of a case of gain B. Fig. 9 shows the norm of x de�ned
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Figure 7: Control error ec.
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Figure 8: Estimation error ee.

in the eq. (37). Top graph and bottom one shows the
norm of the case of gain A and gain B, respectively.

In the case of the static target object, i.e. after t = 8
[s], all errors in Fig. 7, 8 and 9 tend to zero. It can be
concluded that the equilibrium point is asymptotically
stable if the target object is static. In the case of 
 =
0:264, the performance is improved as compared to the
case of 
 = 0:522. After all, the experiment results show
that L2-gain is adequate for the performance measure
of the visual feedback control.

5. Conclusion

This paper has discussed the relative rigid body mo-
tion control problem with manipulator dynamics using
visual information. Firstly the model of the relative
rigid body motion and nonlinear observer are described
in order to derive the dynamic visual feedback system.
Secondly we proposed the dynamic visual feedback con-
trol law which is based on passivity. Local asymptotic
stability of the overall closed-loop system and L2-gain
performance analysis for the proposed control law has
been discussed using the energy function. Finally exper-
imental results on SICE{DD arm have been reported to
con�rm the e�ectiveness of the visual feedback control
law.
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