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Abstract— This paper investigates open-loop control, which
does not need the joint angles and velocities, for two degree
of freedom(2DOF) robot manipulators with antagonistic bi-
articular muscles which are passing over adjacent two joints
and acting the both joints simultaneously. The manipulator
dynamics of three muscle torques, we call the bi-articular
manipulator dynamics, is constructed in order to design the
control input. Stability analysis with respect to our proposed
control law is discussed based on the Lyapunov method. Our
approach is inspired by the fact that humans do not measure the
joint angles and velocities explicitly, Finally, simulation results
are shown in order to confirm the proposed method and given
a design procedure in order to assign the tuning parameter.

I. I NTRODUCTION

Recently, activity of robots in homes, workspaces, pro-
viding support in services, healthcare and assistance are
expected. These robots are not expected to have high torque
and high speed, but have safely and dependably. Robot
manipulators which have actuators in each joint can move
with high torque and high speed, so that we can consider that
there might be an inflicting injury on human. These robots
are not suitable as modern robots which interact human, i.e.,
rehabilitation, care, surgery, and so on [1].

On the other hand, neurons, muscles, bones, joints and
ligaments are related to human motion. Recently, analysis
of human motion and robot control using the mechanism of
human body attract attention. For example, the configuration
of the affected human limb(s) can be controlled at each joint
with rehabilitation robots, so that missing motor synergies
can now be compensated for severely disabled patients [2].
M. Kuschelet al. [3] have proposed a mathematical model
for visual-haptic perception of compliant objects based on
psychophysical experiments. Wanget al. [4] dealt with a
neural network based inverse optimal neuromuscular electri-
cal simulation controller to enable the lower limb to track
a desired trajectory. One of the most important mechanisms
of human motion is antagonistic bi-articular muscles, which
are passing over adjacent two joints and acting the both
joints simultaneously. Since robot manipulators with antag-
onistic bi-articular muscles do not need high torque, the
inflicting injury on human decreases. Kumamotoet al. give
us the effects of the existence of antagonistic bi-articular
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Fig. 1. (a)2DOF robot arm. (b)Human arm model. Two couples of the
antagonistic mono-articular muscles off1 and e1, and of f2 and e2 are
attached to the joints ofJ1 andJ2, respectively. A couple of the antagonistic
bi-articular musclesf3 ande3 are attached to both joints ofJ1 andJ2.

muscles [5]–[7]. Ohet al. have proposed two-degree-of-
freedom control for robot manipulators with antagonistic
bi-articular muscles [8][9]. While stability analysis has not
been discussed in these works, we have proposed passivity-
based control and discussed the stability analysis explicitly
in [10]. However, the proposed control law utilize the joint
angles and velocities, although humans do not measure these
informations explicitly.

This paper deals with open-loop control, which does not
need the joint angles and velocities, for 2DOF robot ma-
nipulators by using antagonistic bi-articular muscles. Firstly,
the brief summary of passivity-based control for 2DOF robot
manipulators with antagonistic bi-articular muscles is given.
Secondly, we propose an open-loop control law and discuss
the stability analysis of the error dynamics based on the
Lyapunov method. Finally, the simulation results show the
validity of the proposed control law and give a design
procedure in order to assign the tuning parameter.

II. PREVIOUS WORKS

A. Bi-articular Manipulator Dynamics

The dynamics ofn-link rigid robot manipulators can be
written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = T (1)

whereq, q̇ andq̈ are the joint angle, velocity and acceleration,
respectively.T is the vector of the input torque.M(q) ∈



Rn×n is the manipulator inertia matrix,C(q, q̇) ∈ Rn×n

is the Coriolis matrix andg(q) ∈ Rn is the gravity vec-
tor [11]. In the case of 2DOF robot manipulators as shown
in Fig. 1(a), the dynamics can be concretely represented as[

M1 + 2M2 + 2RC2 2M2 +RC2

2M2 +RC2 2M2

] [
q̈1
q̈2

]
+

[
−RS2q̇2 −RS2(q̇1 + q̇2)
RS2q̇1 0

] [
q̇1
q̇2

]
+

[
g(m1lg1 +m2l2)C1 + g(m2lg2)C12

g(m2lg2)C12

]
=

[
T1

T2

]
.

(2)

Human arm model can be simplified as three pairs of
antagonistic muscles as depicted in Fig. 1. Generally, the
joint torqueT will be designed as control input directly in
robot motion control. A couple of bi-articular muscles are
attached to both joints as shown in Fig. 2. The joint torques
are described as

Ti = (Ffi − Fei)rp + (Ff3 − Fe3)rp

= (ufi − uei)rp − (ufi + uei)kir
2
pqi − (ufi + uei)bir

2
pq̇i

+(uf3 − ue3)rp − (uf3 + ue3)k3r
2
p(q1 + q2)

−(uf3 + ue3)b3r
2
p(q̇1 + q̇2). (i = 1, 2) (3)

In Fig.2, Ffj and Fej(j = 1, 2, 3) are output forces by
flexor muscle and by extensor muscle.ufj anduej represent
contractile forces of flexor muscle and of extensor muscle.
rp, kj and bj are the radius of the joint, coefficients w.r.t.
elastic and coefficients w.r.t. viscosity[5]. The contractile
forces of flexor muscle and of extensor muscle have fol-
lowing relationship[6].

ufj + uej = 1 (j = 1, 2, 3). (4)

Because the contractile force of flexor muscleufj can be
decided by an actuator, muscle torques are defined asτi :=
(2ufi − 1)rp. Then the joint torques (3) can be transformed
into

Ti = τi + τ3 − kir
2
pqi − k3r

2
p(q1 + q2)

−bir
2
pq̇i − b3r

2
p(q̇1 + q̇2). (i = 1, 2) (5)

In order to design the bi-articular muscle torqueτ ∈ R3

as the control input, we define the antagonistic bi-articular
muscles torque as

τ3 =
1

2
(m2l

2
g2 + Ĩ2)(q̈1 + q̈2) + g(m2lg2)C12

+k3r
2
p(q1 + q2) + b3r

2
p(q̇1 + q̇2)

= M2(q̈1 + q̈2) + g(m2lg2)C12

+k3r
2
p(q1 + q2) + b3r

2
p(q̇1 + q̇2). (6)

From Eqs. (2), (5) and (6), the manipulator dynamics of
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Fig. 2. Visco-elastic muscle model [6].Fj : output force,uj : contractile
force, kj : coefficient w.r.t. elastic,bj : coefficient w.r.t. viscosity,xj :
contracting length,rp: radius of the joint.

three antagonistic muscle torques can be represented as M1 +M2 + 2RC2 M2 +RC2 0
M2 +RC2 M2 0

0 0 M2

 q̈1
q̈2

q̈1 + q̈2


+

 −RS2q̇2 −RS2(q̇1 + q̇2) 0
RS2q̇1 0 0

0 0 0

 q̇1
q̇2

q̇1 + q̇2


+

 g(m1lg1 +m2l1)C1

0
g(m2lg2)C12


+Kr

 q1
q2

q1 + q2

+Br

 q̇1
q̇2

q̇1 + q̇2

 =

 τ1
τ2
τ3

 (7)

where M1 = m1l
2
g1 + m2l

2
1 + Ĩ1, M2 = 1

2 (m2l
2
g2 + Ĩ2)

andR = m2l1lg2. Si, Ci, Sij andCij meanssin qi, cos qi,
sin(qi + qj) and cos(qi + qj) (i, j = 1, 2), respectively.
mi, li, lgi and Ĩi are the weight of the linki, the length
of the link i, the distance from the center of a jointi to
the center of the gravity point of the linki and the moment
of inertia about an axis through the center of mass of the
link i. Kr := diag {k1, k2, k3} r2p ∈ R3×3 and Br :=
diag {b1, b2, b3} r2p ∈ R3×3 mean the matrices w.r.t. elastic
and viscosity. Moreover, we define the extended joint angle
vector for the manipulator dynamics of three antagonistic
muscle torques as

θ =

 q1
q2

q1 + q2

 . (8)

The manipulator dynamics with antagonistic bi-articular
muscles,we call the bi-articular manipulator dynamics[10],
can be described as

Mb(θ)θ̈ + Cb(θ, θ̇)θ̇ + gb(θ) +Krθ +Br θ̇ = τ (9)
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Fig. 3. Block diagram of the closed-loop system and the previous control
law

where the elements ofMb(θ) ∈ R3×3, Cb(θ, θ̇) ∈ R3×3 and
gb(θ) ∈ R3 are correspond to Eq. (7). Then the bi-articular
manipulator dynamics has following important properties.

Property 1: Under the conditionsM1 + M2 > 2R and
M1M2 > R2, the inertia matrixMb(θ) preserves the positive
definiteness1.

Property 2: Ṁb(θ)− 2Cb(θ, θ̇) is skew-symmetric.
Because Property 1 and 2 are very important factors for
stability analysis, we construct the bi-articular manipulator
dynamics (9) which satisfies them.

B. Passivity-based Control

The control objective of the manipulators with antagonistic
bi-articular muscles is that both joint angle and the joint
velocity coincide with the desired ones, respectively. For the
bi-articular manipulator dynamics, we have considered the
control law as

τ = Mb(θ)v̇ + Cb(θ, θ̇)v + gb(θ)− ė+Krθd +Br θ̇

(10)

wherev, e and a desired joint angle is defined asv = θ̇d −
Kre, e = θ−θd andθd = [qd1 qd2 qd1+qd2]

T . Substituting
Eq. (10) into Eq. (9), the closed-loop system can be obtained
as

Mb(θ)ṡ+ Cb(θ, θ̇)s+ s = 0 (11)

wheres := ė+Kre. The block diagram of the closed-loop
system is depicted in Fig.3.

Theorem 1:[10] The equilibrium point(e, ė) = 0 for the
closed-loop system (11) is asymptotic stable.
Theorem 1 can be proved by using the following Lyapunov
function

V =
1

2
sTMb(θ)s+ eTKre (12)

via Property 1 and 2 which are concerned with the pas-
sivity, although the passivity of the bi-articular manipulator
dynamics can not be shown on account of antagonistic bi-
articular muscles explicitly. Indeed, this control law is similar
to one of passivity-based control laws for robot manipulators
which is well-known as the Slotine and Li scheme [12]. More
details are available in [10].

1In the ideal case withl1 = l2 = 2lg1 = 2lg2, the conditions can be
simple asm1 > 3/2m2.
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Fig. 4. Block diagram of the proposed control law.

III. O PEN-LOOP CONTROL FORBI-ARTICULAR

MANIPULATOR DYNAMICS

In this section, we present the analysis of the open-loop
model of 2DOF robot manipulators with antagonistic bi-
articular muscles.

A. Open-loop Control Law

Because it is inferred that humans do not measure the joint
angles and velocities explicitly, we propose the following
open-loop control law

τ = Mb(θd)θ̈d + Cb(θd, θ̇d)θ̇d + gb(θd)

+Krθd +Br θ̇d. (13)

This is noted thatθ and θ̇ are replaced withθd and θ̇d in
Eq. (10). The block diagram of the proposed control law is
depicted in Fig. 4 . Substituting Eq. (9) into Eq. (13), the
error dynamics can be obtained as

Mb(θ)ë = −Cb(θ, θ̇)ė−Kre−Br ė− h (t, e, ė) (14)

where the residual dynamicsh (t, e, ė) is defined as follows:

h (t, e, ė) = {Mb(θ)−Mb(θd)} θ̈d
+{Cb(θ, θ̇)− Cb(θd, θ̇d)}θ̇d + gb(θ)− gb(θd).

(15)

Then, the bi-articular manipulator dynamics satisfies the
following properties like that ofn−DOF robots manipula-
tors [13].

Property 3: There exists a constantkM > 0 such that

∥Mb(x)z −Mb(y)z∥ ≤ kM∥x− y∥z

for all vectorsx, y, z ∈ R3.
Property 4: There exist numberskC1 > 0, kC2 > 0 such

that

∥Cb(x, z)w − Cb(y, v)w∥ ≤ kC1∥z − v∥∥w∥
+kC2∥x− y∥∥w∥∥z∥

for all vectorsv, w, x, y, z ∈ R3.
Property 5: The vectorgb(θ) is Lipschitz, that is, there

exists a nonnegative constantkg ≥
∥∥∥∂gb(θ)

∂θ

∥∥∥ such that

∥gb(x)− gb(y)∥ ≤ kg∥x− y∥

for all vectorsx, y ∈ R3.
Property 6: There exist constantskh1, kh2 ≥ 0 such that

the norm of the residual dynamics satisfies

∥h (t, e, ė) ∥ ≤ kh1 ∥ė∥+ kh2 ∥Sin(e)∥ (16)



for all e, ė ∈ R3, where Sin(e) is following saturated
function [14]

Sin(x) = [Sin(x1), Sin(x2), · · · ,Sin(xn)]
T (17)

Sin(xi) =

 1 xi ≥ π
2

sin (xi) |xi| < π
2

−1 xi ≤ −π
2

(18)

∂Sin(x)

∂x
= Cos(x) = diag{Cos(x1), · · · ,Cos(xn)}(19)

for all vectorx ∈ Rn. Saturated functionSin(x) satisfies the
following properties

• ∥Sin(x)∥ ≤ ∥x∥
• ∥Sin(x)∥ ≤

√
n

• ∥Sin(x)∥2 ≤ Sin(x)Tx
• ∥Cos(x)ẋ∥ ≤ ∥ẋ∥

for all x, ẋ ∈ Rn.

B. Stability Analysis with Open-loop Control Law

Here, we define the state of the error dynamics with the
bi-articular manipulator dynamics and the proposed control
law as x := [eT ėT ]T . If the equilibrium pointx = 0,
then the joint angle and the joint velocity coincide with the
desired ones and the control objective is achieved. We show
the following theorem concerning the stability of the error
dynamics.

Theorem 2:Given a positive scalarγ, assume

λmin{Br} > kh1 + γb (20)

λmin{Kr} > Max

{
γ2λ

2
Max{Mb(θ)}
λmin{Mb(θ)}

,

{2γa+ kh2}2

4γ[λmin{Br} − kh1 − γb]
+ kh2

}
(21)

where the constanta andb are given by

a =
1

2

[
−λmin{Br}+ kC1

{
sup

(
θ̇d

)}
+ kh1

]
,

b = λMax{Mb(θ)}+
√
3kC1.

Then the equilibrium pointx = 0 for the error dynamics is
asymptotic stable,

Proof: Consider the following Lyapunov function can-
didate,

V (t, e, ė) =
1

2
ėTMb(θ)ė+

1

2
eTKre+ γSin(e)TMb(θ)ė

(22)

whereSin(e) is defined as the saturated function (18). To
show that the Lyapunov function candidate (22) is positive
definite, we first observe that the third term in (22) satisfies

−γSin(e)TMb(θ)ė ≥ −γλMax {Mb(θ)} ∥e∥ ∥ė∥ (23)

Therefore, the Lyapunov function candidate (22) satisfies the
following inequality:

V (t, e, ė) ≥
1

2

[
∥e∥
∥ė∥

]T [
λmin {Kr} −γλMax {Mb(θ)}

−γλMax {Mb(θ)} λmin {Mb(θ)}

] [
∥e∥
∥ė∥

]
(24)

and consequently, it happens to be positive definite and
radially unbounded since by assumption,Kr is positive
definite and we also supported that it is chosen so as to
satisfy (21).

Using Property 2, the time derivative of the Lyapunov
function candidate (22) yields

V̇ (t, e, ė) = −ėTBr ė+ γėTCos(e)TMb(θ)ė− γSin(e)TKre

−γSin(e)TBr ė+ γSin(e)TCb(θ, θ̇)
T ė

−ėTh (t, e, ė)− γSin(e)Th (t, e, ė) . (25)

We now proceed to upper-bounḋV (t, e, ė) by a negative
definite function in terms of the statese and ė. Using the
properties of the bi-articular manipulator dynamics, each
term in Eq. (25) satisfy

−ėTBr ė ≤ −λmin {Br} ∥ė∥2 (26)

γėCos(e)TMb(θ)ė ≤ γλMax {Mb(θ)} ∥ė∥2 (27)

−γSin(e)TKre ≤ −γλmin {Kr} ∥Sin(e)∥2 (28)

−γSin(e)TBr ė ≤ −γλmin {Br} ∥ė∥ ∥Sin(e)∥ (29)

γSin(e)TCb(θ, θ̇)
T ė ≤ γ

√
3kC1 ∥ė∥2

+γkC1

{
sup

(
θ̇d

)}
∥ė∥ ∥Sin(e)∥

(30)

−ėTh (t, e, ė) ≤ kh1 ∥ė∥2 + kh2 ∥ė∥ ∥Sin(e)∥ (31)

−γSin(e)Th (t, e, ė) ≤ γkh1 ∥ė∥ ∥Sin(e)∥
+γkh2 ∥Sin(e)∥2 . (32)

The bounds (26)–(32) yield that the time derivativeV̇ (t, e, ė)
in (25), satisfies

V̇ (t, e, ė) ≤ −γ

[
∥Sin(e)∥

∥ė∥

]T
R(γ)

[
∥Sin(e)∥

∥ė∥

]
(33)

where the matrixR (γ) is defined as

R (γ) =

[
λmin {Kr} − kh2 −a− 1

γ
kh2

2

−a− 1
γ

kh2

2
1
γ {λmin {Br} − kh1} − b

]
.

According to the theorem of Sylvester, in order for the matrix
R (γ) to be positive definite it is necessary and sufficient that
the componentR11 and det{R (γ)} be strictly positive. With
respect to the first condition we stress that the matrix w.r.t.
elasticKr must satisfy

λmin {Kr} ≥ kh2. (34)

On the other hand, the determinant ofR (γ) is given by

det {R (γ)} =
1

γ
[λmin {Kr} − kh2] [λmin {Br} − kh1]

− [λmin {Kr} − kh2] b−
[
a+

1

γ

kh2
2

]2
.

The latter must be strictly positive for which it is necessary
and sufficient that the matrix w.r.t. elasticKr satisfies

λmin {Kr} >
{2γa+ kh2}2

4γ [λmin {Br} − kh1 − γb]
+ kh2 (35)
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while it is sufficient thatBr satisfies

λmin {Br} > kh1 + γb (36)

for the light-hand side of the inequality (35) to be positive.
Observe that in this case the inequality (34) is trivially
implied by (35).

Notice that the inequalities (35) and (36) correspond
precisely to those in (20) and (21) as the tuning guidelines
for the controller. This means thatR (γ) is positive definite
and therefore,V̇ (t, e, ė) is negative definite.

According to the arguments above, given a positive con-
stantγ we may determine the matricesKr andBr according
to Eqs. (20) and (21) in a way that the functionV (t, e, ė)
given by (22) is positive definite whilėV (t, e, ė) expressed
as (33) is negative definite. For this reason,V (t, e, ė) is
a strict Lyapunov function. According to Eqs. (22) and
(33), the equilibrium point for the error dynamics (14) is
asymptotic stable.

Theorem 2 shows the stability for the error dynamics
combined by the bi-articular manipulator dynamics and the
proposed open-loop control law via the Lyapunov method.

It is interesting to note that the joint anglesθ and the joint
velocities θ̇ are exploited in the inner-loop only as depicted
in Fig. 4.

IV. SIMULATION RESULTS

We show the simulation results in order to confirm the
proposed open-loop control law. The parameters of the bi-
articular manipulator dynamics used in the simulation are
m1 = 3.5[kg], m2 = 1.75[kg], l1 = 0.3[m], l2 = 0.3[m].
lg1 = 0.15[m], lg2 = 0.15[m], Ĩ1 = 0.026[kg·m2], Ĩ2 =
0.013[kg·m2] and rp = 0.05[m]. The coefficients w.r.t.
viscosity areb1 = b2 = b3 = 400[Ns/m] and the coefficients
w.r.t. elastic arek1 = 3000[N/m], k2 = 2000[N/m] and
k3 = 4000[N/m] for γ = 0.1815. We consider set-point
problems with the following initial valuesq1(0) = 0[rad],
q2(0) = 0[rad], q̇1 = 0[rad/s] and q̇2 = 0[rad/s]. The
simulation results for the set-point problem are shown in
Figs. 5– 10. Figs. 5 and 6 depict the joint angles in the
case ofqd1 = 0 and qd2 = π

2 with the proposed open-loop
control law (13). For comparison, Figs. 7 and 8 depict the
joint angles in the case ofqd1 = 0 and qd2 = π

2 with the
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previous control law[10]. In Figs. 5 and 7, solid lines are
the joint angles and dashed lines are desired ones. In Figs. 6
and 8, solid lines are the link and markers are the joints.
Although the step response with a open-loop is inferior to
the proposed closed-loop control law, these simulation results
suggest that 2DOF robot manipulators with antagonistic bi-
articular muscles could be controlled with the proposed open-
loop control law.

Here, we give a design procedure in order to assign the
matricesKr andBr in the following.

Step 1) The matrixBr satisfying the condition (20) is
chosen for a givenγ.

Step 2) The matrixKr satisfying the condition (21) is
decided.

Based on the design procedure, we design the matricesBr

andKr for the following two givenγ.

γ = 0.1283 :Kr = diag{1500, 1000, 2000}r2p, Br = diag
{200, 200, 200}r2p;

γ = 0.2567 :Kr = diag{6000, 4000, 8000}r2p, Br = diag
{2000, 2000, 2000}r2p.

Figs. 9 and 10 depict the simulation results in the case
of γ = 0.1283 and γ = 0.2567, respectively. The rise time
is small for the smaller values ofγ from Figs. 5, 9 and
10, while the time response is oscillatory. These simulations
show how the method can be used to adjust the rise time
and the overshoot for the proposed open-loop control system,
where the parameterγ together with the matricesKr andBr

can be tuned for such purpose.

V. CONCLUSIONS

This paper considers open-loop control for the 2DOF robot
manipulators with antagonistic bi-articular muscles. The sta-
bility analysis of the error dynamics has been discussed based
on the Lyapunov method. The simulation results show the
validity of the proposed open-loop control law and the design
procedure for the matricesKr andBr. This approach does
not deal with the uncertainties of the bi-articular manipulator
dynamics. In our future work, we will consider vision-based

control for the bi-articular manipulator dynamics in order
to overcome this drawback and verify the validity of the
proposed open-loop control law with experiments.
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