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Abstract—This paper investigates open-loop control, which
does not need the joint angles and velocities, for two degree
of freedom(2DOF) robot manipulators with antagonistic bi-
articular muscles which are passing over adjacent two joints
and acting the both joints simultaneously. The manipulator
dynamics of three muscle torques, we call the bi-articular
manipulator dynamics, is constructed in order to design the Yy
control input. Stability analysis with respect to our proposed
control law is discussed based on the Lyapunov method. Our q
approach is inspired by the fact that humans do not measure the
joint angles and velocities explicitly, Finally, simulation results

are shown in order to confirm the proposed method and given %
a design procedure in order to assign the tuning parameter. q
I. INTRODUCTION T
Recently, activity of robots in homes, workspaces, prota) 2DOF robot arm (b) Human arm model

viding support in services, healthcare and assistance are
(a)2DOF robot arm. (b)Human arm model. Two couples of the

R g, 1.
expect_ed. These robots are not eXpECted to have hlgh tor{l‘rﬁ%agonistic mono-articular muscles ¢f ande;, and of fo and ey are
and high speed, but have safely and dependably. Robgfached to the joints of; and.Js, respectively. A couple of the antagonistic
manipulators which have actuators in each joint can move-articular musclesfs andes are attached to both joints of; and.J.

with high torque and high speed, so that we can consider that
there might be an inflicting injury on human. These robots

are not suitable as modern robots which interact human, i.@qscles [5]-[7]. Ohet al. have proposed two-degree-of-
rehabilitation, care, surgery, and so on [1]. freedom control for robot manipulators with antagonistic
On the other hand, neurons, muscles, bones, joints agarticular muscles [8][9]. While stability analysis has not
ligaments are related to human motion. Recently, analysizen discussed in these works, we have proposed passivity-
of human motion and robot control using the mechanism fased control and discussed the stability analysis explicitly
human body attract attention. For example, the configuratiqp [10]. However, the proposed control law utilize the joint
of the affected human limb(s) can be controlled at each joigingles and velocities, although humans do not measure these
with rehabilitation robots, so that missing motor synergiefformations explicitly.
can now be compensated for severely disabled patients [2].This paper deals with open-loop control, which does not
M. Kuschelet al. [3] have proposed a mathematical modeheeq the joint angles and velocities, for 2DOF robot ma-
for visual-haptic perception of compliant objects based ORjpyiators by using antagonistic bi-articular muscles. Firstly,
psychophysical experiments. Wanrg al. [4] dealt with @  the brief summary of passivity-based control for 2DOF robot
neural network based inverse optimal neuromuscular electfanipulators with antagonistic bi-articular muscles is given.
cal simulation controller to enable the lower limb to traCkSecondIy, we propose an open-loop control law and discuss
a desired trajectory. One of the most important mechanisnyse stability analysis of the error dynamics based on the
of human motion is antagonistic bi-articular muscles, Whidllyapunov method. Finally, the simulation results show the
are passing over adjacent two joints and acting the bo%lidity of the proposed control law and give a design

joints simultaneously. Since robot manipulators with antagsrocedure in order to assign the tuning parameter.
onistic bi-articular muscles do not need high torque, the

inflicting injury on human decreases. Kumametoal. give [l. PREVIOUSWORKS
us the effects of the existence of antagonistic bi-articulas gj-articular Manipulator Dynamics
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R™" is the manipulator inertia matrix('(¢,§) € R™ " —\/\/\/

. . . . . F
is the Coriolis matrix andy(¢) € R™ is the gravity vec- b |-t
tor [11]. In the case of 2DOF robot manipulators as shown _|:|:I_TZ?
in Fig. 1(a), the dynamics can be concretely represented as m
(5=1, 2, 3)
M +2Ms +2RCy  2Ms5 + RCy g1
2M2 + RCQ 2M2 (jg | Ff3
—RS2¢2  —RS2(¢1 + ¢2) q1 T | F, Fp T,
RS>n 0 o {K ,
n g(malgr +mal2)Ch + g(malg2)Crz | _ [ Th RN N
2
( ) Ff’l vFeQ
Human arm model can be simplified as three pairs of " F,

antagonistic muscles as depicted in Fig. 1. Generally, the

joint torque T’ will be designed as control input directly in Fig. 2. Visco-elastic muscle model [6F;: output force,u;: contractile
robot motion control. A couple of bi-articular muscles ardorce, k;: coefficient w.rt. elasticb;: coefficient w.r.t. viscosity,z;:
attached to both joints as shown in Fig. 2. The joint torque®"racting lengthr,: radius of the joint.

are described as

T, = (Fp; — Fei)rp + (Frs — Fe3)rp three antagonistic muscle torques can be represented as
= (ugi — tei)Tp — (Upi + Uei)kiTaqi — (Upi + Uei)biToGs M, + My +2RCy My+RCy 0 i
+(uf3 - Ue3)rp - (ufS + ueS)kBTZ((h + q2) M2 + RCQ M2 0 (jg
—(Ufg —+ Ueg)bg’f‘g(ql + qg) (Z = 1, 2) (3) 0 0 M2 (.].1 + dQ
—RS2G2  —RS2(q1 +42) 0 G
In Fig.2, Fy; and F,;(j = 1,2,3) are output forces by + | RS:q 0 0 G2
flexor muscle and by extensor musclg,; andu.; represent L 0 0 0 Q1+ g2
contractile forces of flexor muscle and of extensor muscle. [ g(mly1 + mali)Cy
rp, k; and b; are the radius of the joint, coefficients w.r.t. 4 0
elastic and coefficients w.r.t. viscosity[5]. The contractile | g(maly2)Cha
forces of flexor muscle and of extensor muscle have fol- @ i1 -
lowing relationship[6]. 1K, a 1B, o — | 7 @)
) Q1+ q2 G1 + Go T3
upj+ue; =1 (j=1,2,3). “4)

where M, = mllgl + mgl% + jl, My, = %(mglgz + jg)
Because the contractile force of flexor musalg; can be and R = malilg. S;, C;, Si; and C;; meanssin g;, cos g;,
decided by an actuator, muscle torques are defined as  sin(¢; + ¢;) and cos(q; + ¢;) (i, j = 1, 2), respectively.
(2ug; — 1)rp. Then the joint torques (3) can be transformedn;, ;, I, and I; are the weight of the link, the length
into of the link ¢, the distance from the center of a jointto
the center of the gravity point of the linkand the moment
Ty=7i+ 73 — kir?)qi - k3'rl2)(q1 +q2) of inertia about an axis through2 the cesntgr of mass of the
Cp 2. 320 . . link i. K, := diag{ky, ko,ks}r: € R>*° and B, :=
birydi = bary (1 + d2)- - (0=1,2) ®) diag {b1,ba, b3} r2 € %3”’ mea];npthe matrices w.r.t. elastic
and viscosity. Moreover, we define the extended joint angle

In order to design the bi-articular muscle torquec R* vector for the manipulator dynamics of three antagonistic
as the control input, we define the antagonistic bi-articular P y 9

muscle tor
muscles torque as uscle torques as

q1

1 ~
T3 = §(m2l§2 + 12)(G1 + G2) + g(malg2)Cra o= 1 : ®
9 9, . . g1+ q2
+ksry(q1 + q2) + b3, (41 + G2)
= Mo (i1 + ) + g(malys)Cha The manipulator dynamlcs with antagonistic bl'artlcular
5 9. ) muscleswe call the bi-articular manipulator dynamics[10]
ks, (q1 + g2) + barp (41 + G2)- (6) can be described as

From Egs. (2), (5) and (6), the manipulator dynamics of M (6)0 + C,(6,60)0 + go(0) + K,.0 + B, =7  (9)
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Fig. 4. Block diagram of the proposed control law.

Fig. 3. Block diagram of the closed-loop system and the previous control

law
IIl. OPEN-LOOP CONTROL FORBI-ARTICULAR

MANIPULATOR DYNAMICS

where the elements dff, (/) € R3*3, Cy(6,6) € R**3 and In this section, we present the analysis of the open-loop
gp(0) € R3 are correspond to Eq. (7). Then the bi-articulamodel of 2DOF robot manipulators with antagonistic bi-
manipulator dynamics has following important properties. articular muscles.
Property 1: Under the conditions\{; + My > 2R and
M, M, > R?, the inertia matrix\/,(6) preserves the positive A. Open-loop Control Law
definitenes<. Because it is inferred that humans do not measure the joint
Property 2: M, () — 2C,,(6,0) is skew-symmetric. angles and velocities explicitly, we propose the following
Because Property 1 and 2 are very important factors f@Pen-loop control law
Sty iy, e SONSILCt e aMUar MANGURIN 7 = 0+ Co0 il + 00
Y ) +Kr0d + Br9d~ (13)
B. Passivity-based Control This is noted that) and § are replaced wittd, and 6, in
The control objective of the manipulators with antagonisti€q. (10). The block diagram of the proposed control law is
bi-articular muscles is that both joint angle and the jointlepicted in Fig. 4 . Substituting Eq. (9) into Eq. (13), the
velocity coincide with the desired ones, respectively. For therror dynamics can be obtained as
bi-articular manipulator dynamics, we have considered the My(6)é = —Cb(e,é)é — Kve—Bré—h(t,e,é) (14)
control law as

] . ) . where the residual dynamiég(t, e, ¢) is defined as follows:
7= My(0)0 + Cp(0,0)v + gp(0) — é + K,.04 + B0

(]_O) h (t> 6, é) = {Mb(e) - Mb(ed)} éd

Cy(0,0) — Cyp(04,04)}0 0) — gp(0q).
wherew, e and a desired joint angle is definedas- 6, — HO(.6) B 64)18a+ 0o (0) — gl (dl)S)
Kre,e=0—05and0s = [qgq1 qaz qa1+qae]” . Substituting
Eqg. (10) into Eq. (9), the closed-loop system can be obtained Then, the bi-articular manipulator dynamics satisfies the
as following properties like that ol»—DOF robots manipula-
tors [13].

My(0)5 + Cp(0,0)s +5 =0 (1) property 3: There exists a constaki, > 0 such that

wheres = é + Kre._The_ block diagram of the closed-loop | My (2)z — My(y)z|| < karllz — yl|2
system is depicted in Fig.3. 5
Theorem 1:[10] The equilibrium point(e, ¢) = 0 for the ~for all vectorsz, y, 2 € R*.

closed-loop system (11) is asymptotic stable. Property 4: There exist numberks; > 0, kg > 0 such
Theorem 1 can be proved by using the following LyapunO\t;1at
function 1Cy(z, 2)w — Cy(y, v)w|| < keallz — vl ||wl]

i %STMb(G)S +eTKye (12) thealz = ylllwl| =]

ia P tv 1 and 2 which 4 with th for all vectorsv, w, z, y, z € R.
via Property 1 and 2 which are concemed with the pas-'p 0’5 The vectorg, (6) is Lipschitz, that is, there

sivity, although the passivity of the bi-articular manipulator . . 995, ()

dynamics can not be shown on account of antagonistic b(’r‘-xIStS a nonnegative constay > H 00 H such that
articular muscl_e_s explicitly. Indeed, this control law is similar lgo(x) — gs(@)I| < Egllz — ]|
to one of passivity-based control laws for robot manipulators

which is well-known as the Slotine and Li scheme [12]. Moréor all vectorsz, y € R?.

details are available in [10]. Property 6: There exist constants,;, k2 > 0 such that

the norm of the residual dynamics satisfies
1In the ideal case with; = Iy = 2lg1 = 2lg42, the conditions can be . ) )
simple asm1 > 3/2mo. Ih(t,e,é) |l < Enillé]l + kne ||Sin(e)]| (16)



for all e, ¢ € R3, where Sin(e) is following saturated and consequently, it happens to be positive definite and

function [14] radially unbounded since by assumptioR,. is positive
) ) ) ) 7 definite and we also supported that it is chosen so as to
Sin(z) = [Sin(z1), Sin(xz), - - , Sin(zy,)] a7 satisfy (21).
' _ 1 T > G Using Property 2, the time derivative of the Lyapunov
Sin(x;) = ¢ sin(z;) |2 < 3 (18)  function candidate (22) yields
-1 r, < - .
. ? V(t,e,e) = —¢T Byé + ¢ Cos(e)T My(0)é — ASin(e) T K e
OSin(x) . .
e Cos(z) = diag{Cos(z1), - - - , Cos(xy) }(19) —~Sin(e)T Bré +~Sin(e)TCy (0, 6)T¢
.T . . T .
for all vectorz € R™. Saturated functioSin(x) satisfies the —é" h(t e, é) —ySin(e)* h(t,e,é). (25)
following properties We now proceed to upper-bourid (t,e,¢) by a negative
o [|Sin(z)|| < ||| definite function in terms of the statesand ¢. Using the
o ||Sin(z)|| < +/n properties of the bi-articular manipulator dynamics, each
o |Sin(z)|?* < Sin(z)Tz term in Eq. (25) satisfy
° C 5 ) < 1
|| OS?-’L‘):IH — HI” —éTB7é S —)\nlin {Br} ||é||2 (26)
for all z, £ € R"™. ) T ] 9
véCos(e)” My(0)é < yAmax {My(6)} (]| @7)
B. Stability Analysis with Open-loop Control Law —~Sin(e)T Kre < —yAmin { K, } ||Sin(e)||* (28)
Here, we define the state of the error dynamics with the _fysm(e)TBré < —YAmin { B} |€]| |Sin(e)||  (29)
bi-articular manipulator dynamics and the proposed control Si Ton (0.0 < ~/3k 12
law asz = [eT €T]T. If the equilibrium pointz = 0, Sin(e)" o0, 6)7é < 7v3ken ¢l ) o
then the joint angle and the joint velocity coincide with the +vkcr {Sup (ed)} €]l [[Sin(e) |
desired ones and the control objective is achieved. We show (30)
g;e;;(r)Tl]Ii(():vswng theorem concerning the stability of the error —Tht,e,é) < km ||é||2 + kna ||€l] [Sin(e)]|  (31)
. . T . . .
Theorem 2:Given a positive scalaf, assume —7Sin(e)” (¢, e,€) < vhna [[€[| [|Sin(e)] ,
+7vkn2 ||Sin(e)||” . (32)
)\min{Br} > khl + 'Yb (20) . . . .
Al K.} > Ma { L A2 (ML (0)} Thezgoundt§ $?6)—(32) yield that the time derivatiét, e, ¢)
min r X N (N1 /N 0 y
vy Nenin (M1, (0)) in (25), satisfies
{2ya + kn2}? } ~ : { [[Sin(e)]| } { [[Sin(e)|| }
k 21 Vi(t,e,é) < — . 33
4’7[)\min{Br} - khl - "Yb} + h2 ( ) ( ) 7 || ” (,7) ||6|| ( )
where the constant andb are given by where the matrixR () is defined as
1 .
a=3 |:—)\min{Br} + ke {sup (Qd)} + khl} ) R(y) = Amin {F,} — kno _a— %L
b= Aax {My(0)} + 3k ! —a—LtE2 L0 (B} — k) —b

Then the equilibrium point: = 0 for the error dynamics is . . .
asymptotic stable, According to the theorem of Sylvester, in order for the matrix

. ; ; . R () to be positive definite it is necessary and sufficient that
Proof: Consider the following Lyapunov function can- . - ,
didate g yap the componenR,; and def R ()} be strictly positive. With
' respect to the first condition we stress that the matrix w.r.t.

V(t,e,é) = iéTMb(H)é + ieTKre + ~Sin(e)” My (0)é elastic K, must satisfy

(22) )\min {KT} 2 kh2- (34)
where Sin(e) is defined as the saturated function (18). Td2n the other hand, the determinant®{~) is given by
show that the Lyapunov function candidate (22) is positive 1
definite, we first observe that the third term in (22) satisfies det {R (v)} = 5 Amin {Kr} = kn2] [Amin {Br} — kn1]

—Sin(e)" My(0)é > —yAntax {Mo(0)} |l Il (23) — min {Er} — kna] b — {a + 11“;‘2}
Therefore, the Lyapunov function candidate (22) satisfies the K
following inequality: The latter must be strictly positive for which it is necessary
Vit ed) > and sufficient that the matrix w.r.t. elasti¢, satisfies
) 7 — 2
1 ueu] [ in 1} —wax{Mue)}} {ueu] N (K1 > {2ya + kno} ke (35
sl oo By ooy [lel] o min Lo > o B — =0 2 §9)
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while it is sufficient thatB, satisfies It is interesting to note that the joint anglésand the joint
velocitiesd are exploited in the inner-loop only as depicted
Amin {Br} > kn1 +7b (36) in Fig. 4 P P g P

for the light-hand side of the inequality (35) to be positive.
Observe that in this case the inequality (34) is trivially
implied by (35). We show the simulation results in order to confirm the
Notice that the inequalities (35) and (36) correspongiroposed open-loop control law. The parameters of the bi-
precisely to those in (20) and (21) as the tuning guidelinearticular manipulator dynamics used in the simulation are
for the controller. This means thd@t () is positive definite m; = 3.5[kg], ma = 1.75[kg], ; = 0.3[m], Iz = 0.3[m].
and therefore} (¢, e, ¢) is negative definite. lgg = 0.15[m], g2 = 0.15[m], I; = 0.026[kg-m?], I =
According to the arguments above, given a positive cord.013[kg-m?] and 7, = 0.05[m]. The coefficients w.r.t.
stanty we may determine the matricés. and B, according viscosity areb; = by = b3 = 400[Ns/m] and the coefficients
to Egs. (20) and (21) in a way that the functidh(¢,e,é)  w.r.t. elastic arek; = 3000[N/m], k2 = 2000[N/m] and
given by (22) is positive definite whil&’ (t,e,é) expressed ks = 4000[N/m] for v = 0.1815. We consider set-point
as (33) is negative definite. For this reasdn(t,e,é) is problems with the following initial valueg;(0) = O[rad],
a strict Lyapunov function. According to Egs. (22) andg(0) = Ofrad], ¢3¢ = Ofrad/s] andg, = O[rad/s]. The
(33), the equilibrium point for the error dynamics (14) issimulation results for the set-point problem are shown in
asymptotic stable. B Figs. 5- 10. Figs. 5 and 6 depict the joint angles in the
Theorem 2 shows the stability for the error dynamicgase ofgs; = 0 andgg2 = 5 with the proposed open-loop
combined by the bi-articular manipulator dynamics and theontrol law (13). For comparison, Figs. 7 and 8 depict the
proposed open-loop control law via the Lyapunov methodoint angles in the case af;; = 0 and gq2 = 7 with the

IV. SIMULATION RESULTS
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previous control law[10]. In Figs. 5 and 7, solid lines arecontrol for the bi-articular manipulator dynamics in order
the joint angles and dashed lines are desired ones. In Figstot6overcome this drawback and verify the validity of the
and 8, solid lines are the link and markers are the jointproposed open-loop control law with experiments.
Although the step response with a open-loop is inferior to
the proposed closed-loop control law, these simulation results
suggest that 2DOF robot manipulators with antagonistic bi{!] 2- r_SriCili?n\tlJ ralmd gdo*éhatib (Eds)springer Handbook of Robotics
articular muscles could be controlled with the proposed Opean] E.‘)Glu%ielmeelligl\‘/l. J. Jéhnson and T. Shibata, “Guest Editorial Special
loop control law. Issue on Rehabilitation RoboticSEEE Trans. on Robotigsvol. 25,

Here, we give a design procedure in order to assign th([a3] ,\'>'|0-K3: PE- |47|\;_é80|_' 2005& 5 4R L Klatzky. “Combinati
: . . . Kuschel, M. Di Luca, M. Buss and R. L. Klatzky, “Combination
matricesk’, and B, in the followmg. and Integration in the Perception of Visual-Haptic Compliance Infor-
Step 1) The matrixB, satisfying the condition (20) is mation,” IEEE Trans. on HaptigsVol. 3, No. 4, pp. 234-244, 2010.
chosen for a give [4] Q. Wang, N. Sharma, M. Johnson and W. E. Dixon, “Adaptive Inverse
giveny. Optimal Neuromuscular Electrical StimulationProc. 2010 IEEE
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