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SUMMARY

This paper investigates stabilizing receding horizon
control via an image space navigation function for three-di-
mensional (3D) visual feedback systems. First, we describe
the representation of a relative pose and a camera model.
Next, a visual motion error system which can handle time-
varying desired motion is constructed. Then, visual motion
observer-based stabilizing receding horizon control for 3D
visual feedback systems is proposed. Moreover, a path
planner appropriate for the visual motion error system is
designed through an image space navigation function to
keep all features in the camera field of view. The main
contribution of this paper is to show that the path planner
which always remains in the camera field of view during
servoing is designed for position-based visual feedback
receding horizon control based on optimal control theory.
Finally, we present simulation and nonlinear experimental
results in order to verify control performance with visibility
maintenance of the proposed control scheme. © 2013
Wiley Periodicals, Inc. Electron Comm Jpn, 96(10): 12–21,
2013; Published online in Wiley Online Library (wileyon-
linelibrary.com). DOI 10.1002/ecj.11493

Key words: visual feedback control; receding ho-
rizon control; navigation function; passivity; stability.

1. Introduction

Visual feedback control is a very flexible and effec-
tive method for the autonomous performance of various
tasks for robotic systems [1]. Many researchers have tack-
led the various problems of visual feedback control [2–4].

In particular, there has been an increase of interest in
problems in which all feature points remain within the

camera field of view since the work of Chaumette [5].
Navigation functions that are globally convergent potential
functions are reported to yield very good results for the
camera field of view problem [6–8]. Cowan and colleagues
[6] proposed a visual feedback controller to bring a robot
to rest at a desired configuration for the field of view
problem by using navigation functions. In Ref. 7, a model-
based geometric visual servoing framework capable of
occlusion-free servoing through the navigation function
method was presented. Chen and colleagues [8] developed
an off-line path planner based on an image space navigation
function with an adaptive 2.5D visual servoing controller.
However, the desired control performance cannot always
be guaranteed explicitly, since these useful control methods
[6–8] are not based on optimization.

On the other hand, receding horizon control, also
recognized as model predictive control, is a well-known
control strategy in which a current control action is com-
puted by solving a finite horizon optimal control problem
on-line [9]. For visual feedback systems, a few implemen-
tations of receding horizon control have been reported.
Sauvée and colleagues [10] proposed an image-based vis-
ual servoing scheme based on nonlinear model predictive
control for robot systems. In Ref. 11, nonlinear model
predictive control of instrument motion based on ultra-
sound images is investigated. Recently, the results of com-
parison between the two image prediction models—a
nonlinear global model and a local model based on the
interaction matrix—were given in Ref. 12. Although good
receding horizon control approaches for the visual feedback
system considering mechanical and visibility constraints
are reported in Refs. 10–12, stability is not addressed. In
Refs. 13 and 14, the authors proposed stabilizing receding
horizon control for 3D visual feedback systems, as predic-
tive visual feedback control. However, this position-based
visual feedback control method through the nonlinear re-
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ceding horizon approach can allow feature points to leave
the field of view.

In this paper, we propose stabilizing receding horizon
control via an image space navigation function for 3D
visual feedback systems with an eye-in-hand configuration
as shown in Fig. 1. First, a visual motion error system which
can handle time-varying desired motion is constructed.
Second, stabilizing receding horizon control for the visual
motion error system using a control Lyapunov function is
proposed. Then, a path planner appropriate for the visual
motion error system is designed through an image space
navigation function in order to keep all features within the
camera field of view. Path planning on an image space could
be of significant benefit when used in conjunction with the
proposed position-based receding horizon control by using
an error defined on a Cartesian space. Finally, the control
performance with visibility maintenance of the proposed
control scheme and with the previous scheme [13] is evalu-
ated through simulation and nonlinear experimental results.

The paper is organized as follows. In Section 2, we
propose stabilizing predictive visual feedback control for a
time-varying desired relative pose. In Section 3, we design
a path planner based on an image space navigation function.
Sections 4 and 5 describe simulation and experimental
results that show the advantages of the proposed control
law, followed by conclusions in Section 6.

2. Stabilizing Predictive Visual Feedback Control

2.1 Vision camera model

Visual feedback systems with an eye-in-hand con-
figuration use three coordinate frames: the world frame
Σw, the camera frame Σc, and the object frame Σo, as in Fig.
1. Let pab ∈ R3 and eξ̂θab ∈ SO(3) be the position vector and

the rotation matrix from a frame Σa to a frame Σb. Then, the
relative pose from Σa to Σb can be represented by

where the notation “∧” denotes the skew-symmetric opera-
tor [15]. In contrast, the notation “∨” denotes the inverse
operator to “∧.”

The relative pose from Σc to Σo can be derived by
using the composition rule for rigid body transformations
[15] as follows:

Differentiating Eq. (2) with respect to time, the body veloc-
ity of the relative pose gco can be written as follows (see
Ref. 16):

where Vwc
b  ∈ R6 and Vwo

b  ∈ R6 are the body velocities of
the camera and the target object relative to Σw, respectively.
The notation Ad(gab) represents the adjoint transformation
associated with gab [15].

The relative pose gco = (pco, e
ξ̂θco) cannot be immedi-

ately obtained in the visual feedback system, because the
target object velocity Vwo

b  is unknown and furthermore
cannot be measured directly. To control the camera using
visual information provided by a computer vision system,
we use the pinhole camera model with a perspective pro-
jection as shown in Fig. 2. Here, we consider four feature
points on the rigid target object in this paper. Let λ be the
focal length, αx and αy be the scaling factors along the x and
y axes (in pixels/meter), and poi ∈ R3 and pcoi ∈ R3 be the
position vectors of the target object’s i-th feature point

(2)

(3)

(1)

Fig. 1. Visual feedback system with an eye-in-hand
configuration.  [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

 Fig. 2. Pinhole camera model. [Color figure can be
viewed in the online issue, which is available at

wileyonlinelibrary.com.]

13



relative to Σo and Σc, respectively. Using a transformation
of coordinates, we have pcoi = gcopoi, where pcoi and poi

should be regarded, with a slight abuse of notation, as
[pcoi

T 1]T and [poi
T 1]T via the well-known homogeneous coor-

dinate representation in robotics, respectively (see, e.g.,
Ref. 15).

The perspective projection of the i-th feature point
onto the image plane gives us the image plane coordinate
fcoi := [fcoxi fcoyi]

T ∈ R2 as

where pcoi = [xcoi ycoi zcoi]
T. It is straightforward to extend

this model to four image points by simply stacking the
vectors of the image plane coordinate, that is,
fco = [fco1

T . . . fco4
T ]T ∈ R8. Hereafter, fab means f(gab) for sim-

plicity.

2.2 Visual motion error system

The objective of position-based visual feedback con-
trol is, in general, to bring the actual relative pose gco to the
desired one gcd. Although we handle the time-varying de-
sired pose gcd, the final desired one is assumed to be
constant from the practical point of view in this paper. The
visual feedback control task requires information on the
relative pose gco. Since the only measurable information is
the image features fco in the visual feedback system, we
consider the following visual motion observer based on Eq.
(3) in order to estimate the relative pose gco from the image
features fco:

where g
_

co and V
__

co
b  ∈ R6 are the estimated values of the

relative pose and body velocity, respectively. The new input
ue ∈ R6 is to be determined in order to drive the estimated
values g

_
co and V

__
co
b  to their actual values.

Here we define the pose control error gec and the
estimation error gee as follows:

Using the notations rei := sk(eξ̂θei)∨ ∈ R3 and
sk(eξ̂θei) := 1 / 2(eξ̂θei − e−ξ̂θei) ∈ R3 × 3, we next define the
vectors of the pose control error and the estimation error as
ec := [pec

T  rec
T ]T ∈ R6 and ee := [pee

T  ree
T ]T ∈ R6, respectively.

The estimation error vector ee can be obtained from the
image features fco and the estimated value of the relative
pose g

_
co (i.e., the measurement and the estimate) as follows:

where f
_

co ∈ R8 is the estimated value of the image features
and J(g

_
co) ∈ R8 × 6 is an image Jacobian-like matrix [16].

The pose control error vector ec can also be calculated by
using the desired relative pose gcd and the estimation error
vector ee [14].

Differentiating Eqs. (6) and (7) with respect to time,
we construct the visual motion observer-based pose control
error system (which we call the visual motion error system)
as follows:

where

and Vcd
b  ∈ R6 is the body velocity of the desired relative

pose gcd. Although the visual motion error system (9) in this
paper has the same form as in Refs. 13 and 14, the input u
is different in the two systems. Let us define the error vector
of the visual motion error system as x := [ec

T ee
T]T, which

consists of the pose control error vector ec and the estima-
tion error vector ee. It should be noted that if the vectors of
the pose control error and the estimation error are equal to
zero, then the actual relative pose gco tends to the desired
one gcd when x → 0. In the case that the target object is static
(that is, Vwo

b  = 0), the visual motion error system (9) is
passive from the input u to the output x. The passivity
property can be proved by using the following positive
definite function:

where E(gei) := 1 / 2|pei |
2 + φ(eξ̂θei) ∈ R and φ(eξ̂θei) := 1/2 tr(I – 

eξ̂ θei) ∈ R is the error function of the rotation matrix [17].

2.3 Stabilizing predictive visual feedback
control

In this subsection, the finite horizon optimal control
problem (FHOCP) for visual motion error system (9) is
considered. The FHOCP for system (9) at time t consists of
the minimizat ion with respect  to the input
u(τ, x(τ)), τ ∈ [t, t + T], of the following cost function:

(6)

(7)

(4) (9)

(10)

(5)

(11)

(12)

(13)

(14)(8)
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where R(t)  is  a posit ive diagonal matrix, and
Eqi(gei(t)) := qpi(t)|pei(t)|2 + qri(t)φ(eξ̂θei(t)), with the state
x(t) = x0. For a given initial condition x0, we denote this
solution of the FHOCP as u∗(τ, x(τ)), τ ∈ [t, t + T]. In re-
ceding horizon control, at each sampling time δ, the result-
ing feedback control at state x0 is obtained by solving the
FHOCP and setting

Assuming that the target object is static, we have the
following theorem concerning the convergence of the sta-
bilizing receding horizon control for the visual feedback
system.

Theorem 1 Consider cost function (12)–(14) for
visual motion error system (9).  Suppose that
Vwo

b  = 0, |θec| ≤ π / 2, |θee| ≤ π / 2, and ρ2I ≥ 4QR; then the
receding horizon control for the visual motion error system
is asymptotically stabilizing.

Theorem 1 guarantees the stability of receding hori-
zon control by using the fact that the energy function
ρV(x) of the visual motion error system (9) can be regarded
as a control Lyapunov function in the case of ρ2I ≥ 4QR.
One of the contributions of this paper is that the proposed
control law can be applied to the time-varying desired
relative pose gcd(t), similar to the case of a constant one [13,
14]. Since the stabilizing receding horizon control design
is based on optimal control theory, the control performance
should be improved under the condition of adequate gain
assignment in the cost function.

3. Image Space Navigation Function-Based Path
Planning

3.1 Design of desired body velocity

The inherent problem of position-based visual feed-
back control using only an error defined on a Cartesian
space has been stated, namely, that it is difficult to assure
that the target object will always remain in the camera field
of view during servoing [5]. Because the proposed stabiliz-
ing receding horizon control in the previous section is a
position-based method, it may leave the camera field of
view. In this section, a path planner appropriate for the
visual motion error system is designed through an image
space navigation function to guarantee that all features will
remain in the camera field of view. The control objective in
this paper is stated as follows:

Control Objective: The vision camera follows the
target object, that is, the relative pose gco(t) coincides with
the time-varying desired one gcd(t) which is generated to
keep all features within the camera field of view, and which
converges to the final desired one gcdf

.

From the proposed stabilizing receding horizon con-
trol law (15) and the input to the visual motion error system
(10), the input to the vision camera is designed as follows:

where uRH = [(uc
RH)T (ue

RH)T]T. The desired relative pose
gcd can be obtained by solving the equation

Hence, the vision camera input Vwc
b  needs only the body

velocity Vcd
b .

Here we introduce the navigation function-based
method as a technique for constructing artificial potential
fields in order to design Vcd

b  which can achieve the control
objective. First, we define the desired image feature vector
and the final one as fcd := f(gcd) and fcdf

 := f(gcdf
), respec-

tively. The navigation function used in this paper is defined
as follows:

Definition 1 [7, 8] Let D be a space where all feature
points of the target object remain visible, and let fcdf

 be in
the interior of  D.  A smooth Morse funct ion
ϕ(fcd) : D → [0, 1] is a navigation function if

1. a unique minimum exists at fcdf
;

2. it is admissible on D, that is, uniformly maximal
on the boundary of D.

To develop the desired body velocity Vcd
b , we derive

a relationship between fcd defined on the image space and
Vcd

b  defined on the Cartesian space. Using the desired fea-
ture point pcdi = [xcdi ycdi zcdi]

T, the desired image features
can be obtained as follows:

Differentiating Eq. (18), the relation between the desired
image features fcdi

 and the desired feature point pcdi
 can be

expressed as

Moreover, we have the following relation between the
desired feature point pcdi

 and the body velocity Vcd
b  through

pcdi = gcdpoi:

Hence, the desired image feature vector and the desired
body velocity can be related as

(15)

(16)

(17)

(20)

(21)

(19)

(18)
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where JL(gcd) : SE(3) → R8 × 6 is defined as follows:

Inspired by Eq. (18) and the definition of the naviga-
tion function, the desired body velocity Vcd

b  is designed as
follows:

where ∇ϕ(fcd) := (∂ϕ(fcd) / ∂fcd)T ∈ R8 denotes the gradient
vector of ϕ(fcd) and kcd ∈ R is the positive gain. The design
of the image navigation function ϕ(fcd) is stated in the
Appendix.

The stabilizing predictive visual feedback control law
can be applied to the system by using the desired body
velocity Vcd

b  given by Eq. (24) and the desired relative pose
gcd which is obtained by solving Eq. (17).

3.2 Convergence analysis for path planner

Substituting Eq. (20) into Eq. (18), we obtain for the
velocity of the desired image feature vector

Similar ly to Ref.  8 ,  i t  is  assumed that
∇ϕ(fcd) ∉ NS(JL

T(fcd)), where NS(⋅) denotes the null space
operator. Since fcd is chosen a priori via the off-line path
planning routine in Eq. (25), this assumption can be satis-
fied.

Assuming that ∇ϕ(fcd) is not a member of the null
space JL

T(fcd), the following theorem concerning the conver-
gence of the path planner holds. 

Theorem 2 Suppose that ∇ϕ(fcd) ∉ NS(JL
T(fcd)) and

the initial desired image feature vector fcd(0) satisfies
fcd(0) ∈ D. Then, the desired image feature vector (25)
ensures that fcd(t) ∈ D and the desired relative pose gcd(t)
has the asymptotically stable equilibrium point gcdf

.
Proof: Consider the following positive definite func-

tion:

Evaluating the time derivative of Vn(fcd) along the trajecto-
ries of Eq. (25) gives

where we use the property k|a|2 ≤ kcda
T(JL

TJL)−1a, Wa ∈ R6,
and k denotes a positive constant. It is clear from Eq. (27)
that Vn(fcd) is a nonincreasing function in the sense that

From Eqs. (26) to (28), the condition fcd(t) ∈ D, Wt > 0 is
satisfied for any initial condition fcd(0) ∈ D. By LaSalle’s
Theorem, it can be proved that the only invariant set that
satisfies |JL

T(fcd)∇ϕ(fcd)| = 0 is the origin. Considering the
assumption ∇ϕ(fcd) ∉ NS(JL

T(fcd)), we have shown that
|∇ϕ(fcd)| = 0. By the argument in the Appendix, it can be
shown that fcd(t)→ fcdf

. Since only one geometric solution
of gcd(t) exists due to the fact that we set four feature points
on the target object, it can be concluded that gcd(t) → gcdf

. 
                         "

Theorem 2 guarantees the convergence of the time-
varying desired image feature vector fcd(t) to the final one
fcdf

. The path planner can be designed to keep all features
within the camera field of view based on the image space
navigation function. A block diagram of the visual motion
stabilizing receding horizon control with the image space
navigation function-based path planner is shown in Fig. 3.

Although position-based control can allow feature
points to leave the field of view, its principal advantages are
that it is possible to describe tasks in terms of Cartesian
pose, as is common in many applications, such as robotics
[1], and that it does not need a desired image a priori. Thus,
the proposed method which combines the position-based
receding horizon control and the image-based path planner
allows us to extend the technological application area. The
main contribution of this paper is to present the path planner
which always remains in the camera field of view during
servoing, which is designed for the position-based visual
feedback receding horizon control based on optimal control
theory.

It is also interesting to note that the Jacobian JL(⋅)
between the image feature vector and the body velocity has
exactly the same form as the Jacobian Je(⋅) for the estima-
tion error, which is derived by using a first Taylor expansion
approximation. It leads to application to visual feedback
systems with a panoramic camera using the Jacobian J(⋅) in
Ref. 18.

(23)

(22)

(24)

(27)

(25)

Fig. 3. Block diagram of stabilizing predictive visual
feedback control with image space navigation

function-based path planner. 

(26)

(28)
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Our previous work has proposed stabilizing receding
horizon control for visual feedback systems with manipu-
lator dynamics [13, 14]. In a similar way, our proposed
approach can be applied to robot systems which must be
controlled with a small sampling period.

4. Simulation Results

In this section, we present simulation results for the
visual feedback control with the path planner via the image
space navigation function, compared with the constant
desired motion proposed in Ref. 13.

The simulation was carried out with the initial con-
ditions pco = [0.2 0.2 −1.35]T m, ξθco = [0 0 0]T rad. The
final desired relative pose was pcdf

 = [−0.22 −0.31 −1.35]T

m, ξθcdf
 = [0 0 π / 2]T rad. This condition means that the

vision camera moves from end to end of the field of view
diagonally with optical axis rotation. We set the maximum
and minimum pixel values of the vision camera as fxM = 240
pixels, fxm = –240 pixels, fyM = 320 pixels, fym = –320 pixels.
The weights of the cost function (12)–(14) were selected as
qpc = 0.003, qrc = 0.001, qpe = 0.0003, qre = 0.0001, and R
= diag{0.105, 0.105, 15, 15, 15, 0.105, 300, 300, 30, 30, 30,
300} and ρ = 1 satisfied ρ2I ≥ 4QR. To solve the real-time
optimization problem, the software C/GMRES [19] was
utilized. The control input with receding horizon control
was updated every 2 ms and had to be calculated by the
receding horizon controller within that period. The horizon
was selected as T = 0.04 s. The parameters for the trajectory
generation were selected as kcd = 6000000, Ks = 0.1I, κ =
2.

The simulation results are presented in Figs. 4 to 6.
In Fig. 4, the norm of the state x applying the proposed
control law is shown. The asymptotic stability can be con-
firmed by steady-state performance. Figure 5 shows the

trajectory of the image feature points fco. In Fig. 5, the solid
lines denote the trajectory applying the proposed stabilizing
receding horizon control with the path planner, and the
dashed lines denote those for the constant desired value
[13], respectively. fco(0) := [f1

T(0) f2T(0) f3T(0) f4T(0)]T and
fco(1.5) := [f1

T(1.5) f2T(1.5) f3T(1.5) f4T(1.5)]T show the values
of the image feature vector in the case of the initial condi-
tions and in the case of t = 1.5 s, respectively. The control
method must be designed so that the feature points do not
leave the camera field of view, which is shown by a rectan-
gle in Fig. 5. From Fig. 5 it is concluded that the proposed

Fig. 4. Norm of the state.  [Color figure can be viewed
in the online issue, which is available at

wileyonlinelibrary.com.]

 Fig. 5. Trajectory of image feature points (solid: with
proposed method; dashed: with previous one [13]).

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

 Fig. 6. Pose control error. [Color figure can be viewed
in the online issue, which is available at

wileyonlinelibrary.com.]
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method can make the vision camera keep all feature points
in the field of view. Although convergence to the desired
values was also achieved by the previous method [13] in the
simulation, it corresponds to failure in the actual experi-
ment because the vision camera misses the target object.

Figure 6 shows the actual pose control error er, which
is the error vector between the current relative pose gco(t)
and the final desired one gcdf

, instead of the time-varying
desired one gcd(t). It can be confirmed that all errors con-
verge to zero by steady-state performance. It should be
noted that the position error with the z-axis and the rotation
error with the x-axis and y-axis increases, while the others
are monotonically decreasing. This means that the vision
camera moves away and changes orientation once in order
to keep the target object in the camera field of view. This
validates one of the expected advantages of stabilizing
receding horizon control with the path planner for the visual
feedback system.

Next the performance for the horizon length T is
compared in terms of the integral cost in Table 1. The cost
is calculated by the function

We set the integration interval I = 1.5 in this simulation.
Since the cost of the stabilizing receding horizon method is
smaller than that of the passivity-based visual feedback
control method under conditions of the adequate cost func-
tion, it can be easily verified that the control performance
is improved. As the horizon length increases from T = 0.04
s to T = 1 s, the cost is reduced. In the case of T = 10 s, the
calculation cannot be completed within one sampling inter-
val, due to limited computing power.

5. Experimental Results

In this section, we present experimental results with
an omnidirectional mobile robot from Tosa Denshi, Ltd., as
shown in Fig. 7. We set up a KMT-1607N (30 fps) camera
on the mobile robot. The video signals were acquired by a
PicPort-Stereo-H4D frame grabber board and the HAL-
CON image processing software. The mobile robot was

controlled by a digital signal processor (DSP) DS1104
(dSPACE Inc.) whose sampling time was 10 ms. The con-
trol signal was transmitted through XBees.

Due to environmental constraints, we performed the
experimental verification with non-optical-axis rotation,
but the simulation verification with optical axis rotation. The
experiment was carried out with the following conditions,
parameters, and weights: pco = [0.2 0 −1.3]T m, ξθco =
[0 π / 12 0]T rad, pcdf

 = [0.03 0 −0.6]T m, ξθcdf
 = [0 0 0]T rad,

fxM = 350 pixels, fxm = –350 pixels, fyM = 200 pixels, fym =
–200 pixels, qpc = 0.008, qrc = 0.005, qpe = 0.2, qre = 0.15,
R = diag{1.5, 1.5, 1.75, 0.8, 0.8, 0.8, 0.05, 0.05, 0.05, 0.06,
0.06, 0.06}, ρ = 1, T = 0.05 s, kcd = 140000, Ks = diag{0.1,
0.05, 0.1, 0.05, 0.1, 0.05, 0.1, 0.05}, κ = 2.

The experimental results are presented in Figs. 8 to
10. The pose control error and the estimation error are
shown on the left and right sides of Fig. 8, respectively. We
focus on the errors in the translation of x and z and the
rotation of y, because the errors in the translation of y and
the rotations of x and z are ideally zero in the defined

(29)

 Fig. 7. Mobile robot and target object. [Color figure
can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Fig. 8. Pose control error and estimation one. [Color
figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Table 1. Values of the integral cost with simulation
results
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coordinates in Fig. 7. Since we set the weights and gains in
order not to reach the voltage limits of the mobile robot, the
convergence time of the experimental results is longer than
that of the simulation results. Although a slight error re-
mains in the steady state because of image noise and the
friction force with the robot, it can be confirmed that all
errors converge to zero.

In Fig. 9, the solid and dashed lines respectively
represent the estimated relative pose and the desired relative
pose generated on the basis of the image space navigation

function. It can be verified that the relative pose tracks the
desired one, and that a time delay occurs. Figure 10 shows
the trajectory of the image features fco. In Fig. 10, the top
and bottom graphs show the trajectories obtained by the
previous method [13] and the proposed method, respec-
tively. In the case of the previous method [13], the mobile
robot is controlled so as to reduce the errors in the Cartesian
space. However, the vision camera misses the target object
at 1.2 s because the control approach is not proposed on the
basis of the image space. As a result, the experiment fails
under this condition. On the other hand, it can be confirmed
that the vision camera moves to the desired value while
keeping all feature points in the camera field of view in the
case of the proposed method.

Finally, the performance with respect to the horizon
length T is compared in terms of the integral cost calculated
by Eq. (29) with I = 15 in Table 2. Similarly to the simula-
tion results, the cost is reduced as the horizon length in-
creases. Therefore, the validity of the stabilizing predictive
visual feedback control which can keep all feature points in
the camera field of view is confirmed by the experimental
results.

6. Conclusions

This paper proposes stabilizing receding horizon
control via an image space navigation function for 3D
eye-in-hand visual feedback systems. Regarding the image
space navigation function as a Lyapunov function, conver-
gence analysis for the proposed path planner is provided.
The main contribution of this paper is to show that a path
planner which always remains in the camera field of view
during the servoing is designed for the position-based vis-
ual feedback receding horizon control based on optimal
control theory. Simulation and nonlinear experimental re-
sults are presented to verify the control performance with
visibility maintenance of the proposed control scheme.
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APPENDIX

The Image Space Navigation Function

This section presents the image space navigation
function ϕ(fcd) [6, 8]. The image space navigation function
is designed so that all image features remain in the visible
set.

First ,  we define two auxil iary functions
η(fcd) : R8 → [−1, 1]8 and s(η) : [−1, 1]8 → R8 as follows:
where η(fcd) = [η1(fcd) η2(fcd) . . . η8(fcd)]T, and κ > 0 ∈ R
is an additional parameter to change the potential field.
η(fcdf

) = [ηf1(fcd) ηf2(fcd) . . . ηf8(fcd)]T : R8 → [−1, 1]8 is de-
fined as in Eq. (30). fxM

, fxm
, fyM

 and fym
 ∈ R denote the

maximum and minimum pixel values along the x- and
y-axes, respectively. η and s are functions used to normalize
the current pixel value for the maximum and minimum
pixel values, and to define the error between the current
image features and the final one. The model space naviga-
tion function φ~(η) ∈ R8 → [0, 1] is then defined as

The objective function ϕ
__

(η) ∈ R8 → R is defined as

where Ks ∈ R8 × 8 is a positive definite symmetric matrix.
The image space navigation function by

ϕ(fcd) ∈ D → R can be developed as follows:

where ! is the composition operator. The gradient vector
∇ϕ(fcd) can be represented as

(30)

(31)

(32)

(33)

(34)
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It should be noted that fcd → fcdf
 from Eqs. (30) to (35) when

∇ϕ(fcd) → 0.
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