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SUMMARY

This paper investigates vision-based robot control via
a receding horizon control strategy for fixed camera sys-
tems, as stabilizing predictive visual feedback control.
First, a visual motion robot error system with a fixed camera
configuration is reconstructed in order to improve estima-
tion performance. Next, stabilizing receding horizon con-
trol for three-dimensional visual feedback systems, which
are highly nonlinear and relatively fast systems, is pro-
posed. The stability of the receding horizon control scheme
is guaranteed by using a terminal cost derived from an
energy function of the visual motion robot error system.
Furthermore, simulation and actual nonlinear experimental
results are assessed with respect to stability and perform-
ance. © 2011 Wiley Periodicals, Inc. Electron Comm Jpn,
94(8): 1–11, 2011; Published online in Wiley Online Li-
brary (wileyonlinelibrary.com). DOI 10.1002/ecj.10357

Key words: visual feedback control; receding ho-
rizon control; passivity; stability; control Lyapunov func-
tion.

1. Introduction

Visual feedback control is a very flexible and effec-
tive method for the autonomous performance of various
tasks for robotic systems [1, 2]. It is currently employed in
a wide range of applications, including not only the fields
of robotics and factory automation, but also automatic
guidance of surgical instruments [3], control of an ultra-
sound probe held by a medical robot [4], injection of
biological cells [5], and others. The authors have discussed
passivity-based control for a moving target object in a
three-dimensional (3D) workspace with a fixed camera
configuration [6]. This control approach can be classified

as position-based visual feedback control, which is nor-
mally treated as both an estimation problem and a control
problem. However, the control task has a negative effect on
the estimation of relative rigid body motion in Ref. 6.
Furthermore, the desired control performance cannot al-
ways be guaranteed explicitly, since the control method of
Ref. 6 is not based on optimization.

Receding horizon control, also recognized as model
predictive control, is a well-known control strategy in
which the current control action is computed by solving a
finite horizon optimal control problem on-line [7]. A large
number of industrial applications using model predictive
control can be found in chemical industries where the
processes have relatively slow dynamics. For receding ho-
rizon control, many researchers have addressed the problem
of stability guarantees. In contrast, for nonlinear and rela-
tively fast systems such as in robotics, few implementations
of receding horizon control have been reported. Jadbabaie
and colleagues [8] showed that closed-loop stability is
assured by the use of a terminal cost consisting of a control
Lyapunov function. Furthermore, this result was applied to
the Caltech Ducted Fan to perform aggressive maneuvers
in Ref. 9. In Ref. 10, high effectiveness of stabilizing
receding horizon control for a direct drive manipulator
system is reported on the basis of experimental studies.
However, visual feedback is not considered here.

Predictive control could be of significant benefit
when used in conjunction with visual servoing. With the
incorporation of visual information, the system could an-
ticipate the target’s future position and be waiting there to
intercept it [11]. Ginhoux and colleagues [12] proposed a
repetitive generalized predictive controller to cancel respi-
ratory motions in robotized surgery. Lange and Hirzinger
[13] presented a predictive visual tracking method using
geometrical information to compute a desired path for
high-speed industrial robots. Although good predictive
control approaches using visual information are reported in
those papers, stability is not addressed. In Ref. 14, the
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authors proposed stabilizing receding horizon control for
an eye-in-hand planar visual feedback system. However,
the visual feedback system proposed in Ref. 14 is restricted
to planar manipulators, and this method can treat only a
desired position problem.

In this paper, we propose stabilizing receding horizon
control for 3D visual feedback systems with a fixed camera
configuration, which are highly nonlinear and relatively
fast systems, as a method of predictive visual feedback
control. First, a visual motion robot error system is recon-
structed in order to improve estimation performance. Next,
stabilizing receding horizon control for 3D visual feedback
system using a control Lyapunov function is proposed.
Since the proposed stabilizing visual feedback control law
for the systems is based on receding horizon control theory,
control performance should be improved relative to that of
a nonoptimal control law. Compared with previous work
[14], the proposed control law can treat not only position
but also orientation, so that the range of possible application
areas will undoubtedly be increased. The main idea is the
use of a terminal cost derived from an energy function of
the visual robot motion error system. Then, the control
performance of the proposed control scheme is evaluated
through simulation and experimental results.

The paper is organized as follows. In Section 2, we
derive a visual motion robot error system for 3D fixed
camera systems and discuss an energy function and a sta-
bilizing control law. In Section 3, stabilizing receding ho-
rizon control for fixed camera systems using a control
Lyapunov function is proposed. Section 4 describes simu-
lation and experimental results that show the advantages of
the proposed control laws, followed by conclusions in
Section 5.

2. Visual Motion Robot Error System and
Stabilizing Control Law

2.1 Vision camera model and estimation error
system

A visual feedback system with a fixed camera con-
figuration uses four coordinate frames, which consist of a
world frame Σw, a hand (an end-effector of a manipulator)
frame Σh, a camera frame Σc, and an object frame Σo, as
shown in Fig. 1. Throughout this paper, we use the notation
eξ̂θij ∈ R 3×3 to represent the rotation matrix of a frame Σj

relative to a frame Σi. ξij ∈ R 3 specifies the direction of
rotation and θij ∈ R  is the angle of rotation. For simplicity
we use ξ̂ θij to denote ξ̂ijθij. The notation “∧” (wedge) is the
skew-symmetric operator such that âb = a × b for the vector
cross-product × and any vector a, b ∈ R 3, that is, â is a 3 ×
3 skew-symmetric matrix. The notation “∨” (vee) denotes
the inverse operator to “∧,” that is, so(3) → R 3. Recall that

a skew-symmetric matrix corresponds to an axis of rotation
(via the mapping a �   â). We use the 4 × 4 matrix

as the homogeneous representation of
gij = (pij, e

ξ̂θij) ∈ SE(3) describing the configuration of a
frame Σj relative to a frame Σi. For example, the position
and orientation in the object frame Σo relative to the hand
frame Σh are expressed by gho.

The control objective is to bring the actual relative
rigid body motion gho into agreement with a given constant
reference one gd. We now define a control error as follows:

which represents the error between the relative rigid body
motion gho and the reference one gd. We next define the error
vector of the rotation matrix eξ̂θei as eR(eξ̂θei) := sk(eξ̂θei)∨,
where sk(eξ̂θei) denotes 1 / 2(eξ̂θei − e−ξ̂θei). Using this nota-
tion, the vector of the control error is given by
ec := [pec

T eR(eξ̂θec)T]T.
The relative r igid body motion gho can be der ived by

using the composition rule for  r igid body transformations
[15] as follows:

Here, gch = gwc
−1gwh can be obtained directly, because the

rigid body motions gwc and gwh are known from the structure
of the system and the angles of the manipulator. We assume
that the relative rigid body motion gch can be measured
exactly in this paper. In contrast, the relative rigid body
motion gco can be derived as

The relative rigid body motion involves the velocity of each
rigid body. We define the body velocity of the camera

(1)

(2)

(3)

(4)

Fig. 1. Visual feedback system with a fixed camera
configuration.
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relative to the world frame Σw as Vwc
b  = [vwc

T ωwc
T ]T, where vwc

and ωwc represent the velocity of the origin and the angular
velocity from Σw to Σc, respectively [15]. Differentiating
Eq. (4) with respect to time, the body velocity of the relative
rigid body motion gco can be written as follows (see Ref.
16):

where Ad(gab) is the adjoint transformation [15] associated
with gab and Vwo

b  is the body velocity of the target object
relative to Σw.

In the case of a fixed camera configuration, that is,
Vwc

b  = 0, the body velocity Vco
b  can be rewritten as

In visual feedback control, the relative rigid body
motion gco cannot be utilized directly, but an image feature
f ∈ R 2m can be measured through a pinhole camera with
perspective projection. Hence, we consider a nonlinear
observer in order to estimate the relative rigid body motion
gco from the image feature f. Using the body velocity of the
relative rigid body motion gco (6), we choose estimates
g
_

co = (p
_

co, e
ξ
_̂
θ
__

co) and V
__

co
b of the relative rigid body motion

and velocity, respectively, as

The new input ue is to be determined in order to drive the
estimated values g

_
co and V

__
co
b  to their actual values.

Here, we define the estimation error between the
estimated value g

_
co and the actual relative rigid body motion

gco as

Using the notation eR(eξ̂θei) = sk(eξ̂θei)∨, the vector of the
estimation error is given by ee := [pee

T eR(eξ̂θee)T]T. Suppose
that the attitude estimation error θee is small enough that we
can let eξ̂θee u I + sk(eξ̂θee). Then using a first-order Taylor
expansion approximation, the estimation error vector ee can
be obtained from the image feature f and the estimated value
of the relative rigid body motion g

_
co (i.e., the measurement

and the estimate) as follows:

where f
_
 is the estimated value of the image feature and

J(g
_

co) is an image Jacobian-like matrix [16]. In the same
way as Eq. (5), the estimation error system can be repre-
sented by

2.2 Control error system

The objective of visual feedback control for fixed
camera systems is to bring the actual relative rigid body

motion gho into agreement with a given constant reference
gd. In this subsection, let us consider a control error system
in order to establish a visual robot motion error system.

In our previous work [6], using the estimated relative
rigid body motion

we defined the control error as gec = gd
−1g

_
ho. However, the

estimation input ue has directly affected not only estimation
but also control; as a result, this leads to degraded estima-
tion performance from the practical viewpoint. In order to
remove the above negative effect in this paper, we define
the control error as gec = gd

−1gho (2) between the actual
relative rigid body motion gho and the desired one gd.

Next, we derive the control error gec (2) without the
nonmeasurable value gho. Using the estimation error matrix
gee = g

_
co
−1gco, the control error can be transformed as

In Eq. (12), gd and g
_

ho are available information. While the
estimation error vector ee can be given by Eq. (9), the
estimation error matrix gee, which is defined using the
nonmeasurable value gco as in Eq. (8), cannot be directly
obtained. Focusing on the definition of the estimation error
vector ee, that is, ee := [pee

T eR
T(eξ̂θee)]T, the position estimation

error pee can be obtained directly from ee. In the case of the
rotation estimation error eξ̂θee, if we assume that the region
of the attitude estimation error is restricted to
−π / 2 ≤ θee ≤ π / 2, then ξθee can be obtained as follows:

Therefore, it is possible to derive the control error gec using
available information gd, g

_
ho, and ee by Eq. (12), since gee

can be derived from ee through ξθee by using Eq. (1). A
diagram showing the relationship between ee and gec is
given in Fig. 2. It should be noted that the assumption
−π / 2 ≤ θee ≤ π / 2 will not be a new constraint, since we
have already made the assumption that the attitude estima-
tion error θee is small enough in developing the estimation
error vector ee in Section 2.1.

Differentiating Eq. (2) with respect to time, the con-
trol error system can be represented as

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(5)

Fig. 2. Relationship diagram between ee and gec.
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2.3 Visual motion robot error system

The manipulator dynamics can be written as

where M(q) ∈ R n×n is the inertia matrix, C(q, q
.
) ∈ R n×n is

the Coriolis matrix, g(q) ∈ R n is the gravity vector, and q,
q
.
, and q

..
 are the joint angle, velocity, and acceleration,

respectively. τ is the vector of the input torque, and τd

represents the disturbance input [17]. Since the manipulator
dynamics is considered, the hand body velocity is given by
Vwh

b  = Jb(q)q
.
, where Jb(q) is the body manipulator Jacobian

[15]. Let us define the error vector with respect to the joint
velocity as ξ := q

.
 − q

.
d, where q

.
d represents the desired joint

velocity.
Next, we propose control laws for the manipulator as

where q
..

d represents the desired joint acceleration. The new
input uξ is to be determined in order to reduce the joint
velocity error ξ. Here, we design the reference of the joint
velocity as q

.
d := Jb

†(q)ud, where ud is the desired body
velocity, obtained from the control error system part. Thus,
Vwh

b  in Eq. (14) should be replaced by ud. Using Eqs. (10)
and (14) to (16), a visual feedback error system with the
manipulator dynamics (which we call the visual motion
robot error system) can be derived as follows:

where u := [uξ
T(Ad(gd

−1)ud)Tue
T]T and w := [τd

T(Vwo
b )T]T. We de-

fine the state of the visual motion robot error system as
x := [ξTec

Tee
T]T, which consists of the joint velocity error ξ,

the control error vector ec, and the estimation error vector
ee. It should be noted that if x = 0, then the actual relative
rigid body motion gho tends to the reference one gd.

In the visual motion robot error system (17), the
following important lemma concerning passivity between
the input u and the output n holds.

Lemma 1  If w = 0, then visual motion robot error
system (17) satisfies

where n := Nx, N := diag{I, –I, –I}, and β0 is a positive
scalar.

Due to space limitations, the proof is only sketched.
The proof can be completed by using the following energy
function:

where E(gei) := 1 / 2||pei||
2 + φ(eξ̂θei), and φ(eξ̂θei) := 1 / 2tr(I −

eξ̂θei) is an error function of the rotation matrix (see, e.g., Ref.
18).

2.4 Energy function and stabilizing control law

Based on the above passivity property of the visual
motion robot error system, we now propose the following
control input for the interconnected system:

where Kξ := diag{kξ1, . . . , kξn} denotes the positive gain
matrix for each joint axis of the manipulator. Kc :=
diag{kc1, . . . , kc6} and Ke := diag{ke1, . . . , ke6} are the
positive gain matrices of the x, y, and z axes of the transla-
tion and rotation for the control case and the estimation
case, respectively. Considering the passivity of the visual
motion robot error system shown in Lemma 1, the follow-
ing theorem can be derived for stability.

Theorem 1  If w = 0, then the equilibrium point x
= 0 for closed-loop system (17) and (20) is asymptotically
stable.

Proof  Differentiating Eq. (19) with respect to time
and using control input (20), we obtain

This completes the proof.            (Q.E.D.)
Theorem 1 can be proved using the energy function

(19) as a Lyapunov function. Here we compare proposed
control law (20) with the previous one in Ref. 6. Block

(15)

(17)

(18)

(21)

Fig. 3. Block diagram of part of the control law: left
side, with proposed control law; right side, with previous

control law [6].

(20)

(19)

(16)
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diagrams of the part of the control law in the case of the
proposed method and the previous one [6] are shown at the
left and right sides of Fig. 3, respectively. In Ref. 6, the
control error ec has interfered with the input for the estima-
tion ue = Ke(ee − Ad(eξ̂θec)

T ec). In the sequel, the presence of
ec has negatively affected the estimation of the relative rigid
body motion g

_
co. On the other hand, with proposed visual

feedback control law (20), the feedback inputs are separated
by the error vectors, that is, uξ = −Kξξ, ud = Ad(gd)Kcec, and
ue = Keee. Thus, the proposed control law can overcome the
problem of the above undesirable influence.

Similarly to Fig. 3, block diagrams of the closed-loop
system in the case of the proposed method and the previous
one [6] are shown on the left and right sides of Fig. 4,
respectively. Differently from Ref. 6, the observer of the
proposed system can be unaffected by the reference gd, and
thus it is clear that the estimation task is not directly
impacted by the control task.

This is why the block matrix with respect to the input
of the visual motion robot error system (17) is diagonal. It
should be interpreted that the structure of the passivity-
based visual feedback control can be separated into the
estimation part and the control one in some way. This allows
us to easily set the gains of control law (20) and the weights
of the cost function (22) to (24) described below from a
practical point of view.

However, visual feedback control law (20) is not
based on optimization, and the desired control performance
cannot be guaranteed explicitly. In the next section, stabi-
lizing receding horizon control based on optimal control
theory is proposed.

3. Stabilizing Predictive Visual Feedback Control

The objective of this section is to propose predictive
visual feedback control based on optimal control theory. A
camera can provide more information than the current
derivation from a nominal position at the sample instant.
This property can be exploited to predict the target’s future
position and improve control performance. As predictive

visual feedback control, we propose the stabilizing reced-
ing horizon control based on optimization in this paper.

3.1 Control Lyapunov function for visual
feedback systems

In this section, a finite horizon optimal control prob-
lem (FHOCP) for visual motion robot error system (17) is
considered. The FHOCP for visual motion robot error
system (17) at time t consists of minimization with respect
to the input u(τ, x(τ)), τ ∈ [t, t + T] of the following cost
function:

where R(t) is a positive diagonal matrix, and Eqi(gei(t)) :=
qpi(t)||pei(t)||2 + qRi(t)φ(eξ̂θei(t))(i ∈ c, e), with the state x(t) =
x0. The special property of cost function (22) to (24) is that
the terminal cost is derived from the energy function of the
visual motion robot error system. Furthermore, the rotation
error-related part of the stage cost is derived from the error
function φ(eξ̂θei) instead of the commonly used quadratic
form ||eR(eξ̂θei)||2. For a given initial condition x0, we denote
this solution of the FHOCP as u∗(τ, x(τ)), τ ∈ [t, t + T]. In
receding horizon control, at each sampling time δ, the
resulting feedback control at state x0 is obtained by solving
the FHOCP and setting

A control Lyapunov function closely related to sta-
bility is defined as follows:

Definition 1  [8] The control Lyapunov function
S(x) is given by

where l(x, u) is a positive definite function. The following
lemma concerning the control Lyapunov function is impor-
tant in the proof of stabilizing receding horizon control.

Lemma 2 Suppose that w = 0, ||θec|| ≤ π / 2, ||θee|| ≤
π / 2, and the design parameter ρ satisfies

where Q := diag{qξIn, qpcI3, qRc I3, qpeI3, qReI3}. Then, the
energy function ρV(x) of visual motion robot error system
(17) can be regarded as a control Lyapunov function.

(22)

(23)

(24)

(25)

(27)

(26)

Fig. 4. Block diagram of the closed-loop system: left
side, with proposed control law; right side, with previous

control law [6].
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Proof  Using Eq. (21), which is the time derivative
of V along the trajectory of system (17), the positive definite
function l(x(t), u(t)) (23) and the stabilizing control law uk

(20) with K = ρ / 2R−1 for the system, Eq. (25) can be
transformed into

where we have used the fact that φ(eξ̂θei) ≤ ||eR(eξ̂θei)||2 for all
||θei|| ≤ π / 2.  Therefore,  the condition infu[S

.
(x) +

l(x, u)] ≤ 0 will be satisfied if the assumption ρ2I ≥ 4QR is
valid.                                   (Q.E.D.)

Lemma 2 shows that the energy function ρV(x) of the
visual motion robot error system (17) can be regarded as a
control Lyapunov function in the case of ρ2I ≥ 4QR.

3.2 Stabilizing receding horizon control for
visual feedback systems

We are now in a position to state the main result of
this paper.

Theorem 2 Consider the cost function (22) to (24)
for the visual motion robot error system (17). Suppose that
w = 0, ||θec|| ≤ π / 2, ||θee|| ≤ π / 2, and ρ2I ≥ 4QR; then the
receding horizon control for the visual motion robot error
system is asymptotically stabilizing.

Proof  Our goal is to prove that J(x∗(t), uRH, T),
which is the cost-to-go applying receding optimal control
uRH, will qualify as a Lyapunov function for the closed-loop
system. We construct the following suboptimal control
strategy for the time interval [t + δ, t + T + δ]:

where uk is stabilizing control law (20) with K = ρ / 2R−1 for
the visual motion robot error system. The associated cost is

where x∗ is the optimal state trajectory. This cost, which is
an upper bound for J(x∗(t + δ), u∗, T), satisfies

Using the positive definite function l(x(t), u(t)) (23) and the
stabilizing control law uk (20) for the system, dividing both
sides by δ, and taking the limit as δ → 0, Eq. (31) can be
transformed into

Considering that the control input during the first δ is
uRH = u∗, by the assumption ρ2I ≥ 4QR, the derivative of
J(x∗(t), uRH, T) is negative definite. Therefore, we have
shown that J(x∗(t), uRH, T) qualifies as a Lyapunov function
and asymptotic stability is guaranteed.      (Q.E.D.)

Theorem 2 guarantees the stability of the receding
horizon control using a control Lyapunov function for the
3D visual motion robot error system (17), which is a highly
nonlinear and relatively fast system. Since the stabilizing
receding horizon control design is based on optimal control
theory, the control performance should be improved com-
pared to the passivity-based visual feedback control uk (20),
under the condition of adequate gain assignment in the cost
function. It should be noted that the error function φ(eξ̂θei)
of the rotation matrix can be directly used in the stage cost
(23). The assumption ρ2I ≥ 4QR is very simple and it is
quite easy to set the value of the design parameter ρ, by
virtue of the fact that the matrix N is a block diagonal
matrix, contrary to Ref. 6. Compared with the previous
work [14], the main advantage of this approach is that the
3D visual feedback system is not restricted to a planar
manipulator, and can treat not only the position but also the
orientation. This allows us to extend the range of techno-
logical applications.

In this paper, the receding horizon controller predicts
the states ξ, gec, and gee, using the visual motion robot error

(28)

(29)

(30)

(31)

(32)
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system (17) as the internal model. Considering that gd is a
given reference value, this implies that predictive visual
feedback control anticipates the physical values q

.
, gho, and

g
_

co from visual information. Also, it is interesting that
receding horizon control is applied to the visual motion
observer.

4. Simulations and Experiments

In this section, the validity of the proposed control
law is confirmed by simulation results in the case of a static
target object and by experimental results in the case of a
moving target object. The simulation and experimental
results on a two-degree-of-freedom manipulator, as de-
picted in Fig. 5, are shown as a simple illustration of our
proposed method, although it is valid for 3D visual feed-
back systems. The target object has four feature points.

4.1 Simulation results

First, we present results for the stability analysis with
the static target object. The simulation is carried out with
the initial conditions q1(0) = π / 4 rad, q2(0) = π / 12 rad, pwc

= [0.4732  0.1 0.1]T m, ξθwc = [0 0 0]T rad, pwo = [0.3986  0
–0.9]T m, ξθwo = [0 0 −0.5087]T rad. We use the references
of the relative rigid body motion as constant values, that is,
pd = [0 0 −0.9]T m, ξθd = [0 0 0]T rad. The initial error con-
dition x(0) is ξ(0) = [0 0]T rad/s, pec(0) = [−0.294 −0.293 0]T

m, ξθec(0) = [0 0 −1.556] T rad, pee(0) = [0 −0.004  0]T m,
ξθee(0) = [0 0 −0.015]T rad. The weights of cost function
(22) to (24) were selected as qξ = 0.001, qpc = 0.1,
qRc = 0.05, qpe = 0.3, qRe = 0.1, and R = diag{0.1, 3.2, 0.7,
2, 2, 1, 1, 2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3} and ρ = 1 satisfy
ρ2I ≥ 4QR. To solve the real-time optimization problem, the

C/GMRES software [19] is utilized. The control input with
the receding horizon control is updated every 1 ms. It must
be calculated by the receding horizon controller within that
period. The horizon is selected as T = 0.02 s. The norm of
the state x applying the proposed control law is shown in
Fig. 6. Asymptotic stability can be confirmed by steady-
state performance.

Next, we compare the performance of the receding
horizon control law uRH (25) and the visual feedback con-
trol law uk (20). The controller parameters for the passiv-
ity-based control law uk (20) were empirically selected as
Kξ = diag{10, 3}, Kc = diag{2, 2, 1, 1, 1, 2}, Ke = diag{1,
1, 1, 1, 1, 1}. The aforementioned weights and these gains
are selected in order not to exceed the limit of the input
torque for the manipulator. Figure 7 shows the actual con-
trol error er := [per

T  eR
T(eξ̂θer)]T, which is the error vector

Fig. 5. Experimental arm and fixed camera.
Fig. 7. Actual control error: solid, with predictive

control law; dashed, with passivity-based control law.

Fig. 6. Norm of the state.
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between the actual gho and gd. In Fig. 7, the solid lines
represent the errors when applying the proposed stabilizing
receding horizon control law uRH (25), and the dashed lines
represent those for the control law uk (20). The rise time
applying the receding horizon control is shorter than that
for the passivity-based control law. These results suggest
that the controller predicts the movement of the target
object using the visual information, and as a result, the
manipulator moves more aggressively. This validates one
of the expected advantages of the stabilizing receding ho-
rizon control for visual feedback systems.

Next, the performance for the horizon length T and
the design parameter value ρ is compared in terms of the
integral cost in Table 1. The cost is calculated by the
following function:

We set the integral interval I = 3 in this simulation. Since
the cost of the stabilizing receding horizon method is
smaller than the passivity-based visual feedback control
method (20) under the conditions of an adequate cost
function, it can be easily verified that the control perform-
ance is improved. With increasing weight of the terminal
cost from ρ = 1 to ρ = 5 the cost too increases. With higher
terminal cost, the state value is reduced more strictly, using
a large control input. In this simulation, since the weights
of the control input are larger than those of the state, the
cost increases. As the horizon length increases from T =
0.02 to T = 0.5, the cost is reduced. In the case of T = 1, the
calculation cannot be completed within one sampling inter-
val, due to limited computing power.

4.2 Experimental results

In this subsection, we present experimental results for
the case of a moving target object. The manipulator was
controlled by a digital signal processor (DSP) from
dSPACE Inc., which utilizes a powerPC 750 running at 480
MHz. The control problems were written in MATLAB and
SIMULINK, and were implemented on the DSP using the

Real-Time Workshop and dSPACE software, which in-
cludes ControlDesk, Real-Time Interface, and so on. We set
up a Sony XC-HR57 camera which always kept all feature
points of the target object in the field of view (see Fig. 5).
The video signals were acquired by a PicPort-Stereo-H4D
frame graver board and the HALCON image processing
software. The sampling time of the controller and the frame
rate provided by the camera were 1 ms and 60 fps, respec-
tively. Hence, the image feature f was renewed every 16.7
ms. The control law τ was interpolated every 5.6 ms using
the most recent available data from the vision system. The
difference between the sampling rate of the robot control
and of the image grabbing system can be decreased by using
commercially available cameras with superior perform-
ance.

The target object, projected on the liquid crystal
display, had four feature points and moved for two time
periods (0 ≤ t < 0.85 and 2.15 ≤ t < 3.4), as depicted in Fig.
8. The experiment was carried out with the initial conditions
q1(0) = π / 6 rad, q2(0) = −π / 6 rad, pwc = [0.4732 0.1 0.1]T

m, ξθwc = [0 0 0]T rad. We set the initial error condition
x(0) = 0. The weights of the cost function (22) to (24) were
selected as qξ = 0.1, qpc = 3, qRc = 1, qpe = 30, qRe = 10,
and R = diag{0.1, 0.5, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.008, 0.008, 0.008, 0.01, 0.01, 0.01} and ρ = 1 satisfied
ρ2I ≥ 4QR. The control input with receding horizon control
was updated every 5.6 ms. The horizon was selected as
T = 11.2 ms.

Figure 9 shows the rigid body motion of the end-ef-
fector of the manipulator gwh. The solid lines represent the
rigid body motion gwh applying the proposed stabilizing
receding horizon control law, and the dashed lines denote
the rigid body motion of the actual moving target object
gwo. In Fig. 9, it can be verified that the manipulator tracks
the moving target object. Although a slight error remains in
steady state because of the friction force with the manipu-
lator, it decreases with increasing horizon length. Figure 10
illustrates the rigid body motion gwh of the translation of y
from 3.5 s to 3.6 s when the target object has just stopped.
In Fig. 10, the actual trajectory is different from the reced-

(33)

Fig. 8. Trajectory of the target object.

Table 1. Values of the cost function in simulation
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ing horizon reference values. This indicates that the ma-
nipulator can track the target object with re-prediction of
the physical values ξ, gho, and g

_
co, even if its movement

suddenly changes.
Finally, the performance for the horizon length T is

compared in terms of the integral cost, calculated using Eq.
(33) with I = 5 in Table 2. Similarly to the simulation results,
the cost is reduced as the horizon length increases from T
= 0.0056 to T = 0.056. For values greater than T = 0.056,
the control law cannot be implemented due to limited
computing power.

5. Conclusions

This paper proposes stabilizing receding horizon
control for 3D fixed camera visual feedback systems, which
are highly nonlinear and relatively fast systems, as a method
of predictive visual feedback control. First, the visual mo-
tion robot error system is reconstructed in order to improve
the estimation performance. Next, stabilizing receding ho-
rizon control for the visual feedback systems based on
optimal control theory is designed. It is shown that the
stability of the receding horizon control scheme is guaran-
teed by using the terminal cost derived from the energy
function of the visual motion robot error system. It should
be noted that the proposed stabilizing receding horizon
control approach can be applied to visual feedback systems
with a movable camera configuration [20]. In the simula-
tion and experimental results, the control performance of
the stabilizing receding horizon control is improved com-
pared to that of passivity-based control.
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