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Abstract— This paper investigates passivity based 3D dy-
namic visual force feedback control for fixed camera systems.
In our approach, we can control not only the position but also
the orientation of the robot hand with a contact force by using
visual information. The proposed method can be regarded as
an extension of the hybrid position/force control to the hybrid
vision/force control. The main contribution of this paper is to
show that the 3D dynamic visual force feedback system has
the passivity which allows us to prove stability in the sense
of Lyapunov. Both the passivity of the manipulator dynamics
and the passivity of the visual feedback system are preserved.
Finally simulation results on 3DOF planar manipulator are
presented to verify the stability of the 3D dynamic visual force
feedback system and understand our proposed method simply.

I. INTRODUCTION

Robotics and intelligent machines need sensory informa-
tion to behave autonomously in dynamical environments.
Visual information is particularly suited to recognize un-
known surroundings. Vision based control of robotic systems
involves the fusion of robot kinematics, dynamics, and
computer vision to control the motion of the robot in an
efficient manner. The combination of mechanical control
with visual information, so-called visual feedback control or
visual servoing, is important when we consider a mechanical
system working under dynamical environments [1][2].

For the theoretically problem of three dimensional(3D)
visual servo control based on the robot control theory,
Kelly et al. [3] considered a simple image-based controller
under the assumption that the objects’ depths are known.
Chen et al. [4] addressed the field-of-view problem for
3D dynamic visual feedback system using an image-space
navigation function. In our previous works, we discussed
the dynamic visual feedback control for 3D target tracking
based on passivity [5][6]. On the other hand, applications
of visual feedback system are also increasing in many
fields. For example, recent applications of visual feedback
system include the autonomous injection of biological cells
[7], laparoscopic surgery [8] and others. Although visual
information is necessary in order to recognize environments,
only visual information is not enough to complete tasks in
these applications. For example, not only visual information
but also force information are needed to inject DNA to
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Fig. 1. Visual force feedback system with a fixed camera configuration.

biological cells. Hence, integrating visual feedback control
with force control is important for the modern robot.

Xiao et al. [9] developed sensor fusion scheme for
controlling an end-effector to follow an unknown trajec-
tory on a contact surface. Baeten et al. [10] addressed
a hybrid control structure for the eye-in-hand vision and
force control. Although many practical methods are reported
with experimental results, rigorous results have hardly been
obtained in terms of the nonlinear control aspects. For this
problem, Dean-León et al. [11] have combined image-based
visual feedback control with force control and discussed the
stability of the nonlinear system. The authors have proposed
passivity based visual force feedback control law for force
control with target tracking [12]. Although these control
laws guarantee Lyapunov stability and are effective for the
visual force feedback system, they are restricted to planar
manipulators.

This paper deals with 3D visual force feedback control for
fixed camera systems as depicted in Fig. 1. In our proposed
method, we can control not only the position but also the
orientation of the robot hand with a contact force in the
visual force feedback system. The main contribution of this
paper is to show that the 3D visual force feedback system
has the passivity which allows us to prove stability in the
sense of Lyapunov. Both the passivity of the manipulator
dynamics and the passivity of the visual feedback system are
preserved in the 3D visual force feedback system. Finally
simulation results are shown to verify the stability of the
proposed method.

II. VISUAL FEEDBACK SYSTEM

This section mainly reviews our previous works ([5], [6])
via the passivity based visual feedback control. Throughout



this paper, we use the notation eξ̂θab ∈ R3×3 to represent
the change of the principle axes of a frame Σb relative to
a frame Σa. ξab ∈ R3 specifies the direction of rotation
and θab ∈ R is the angle of rotation. For simplicity we
use ξ̂θab to denote ξ̂abθab. The notation ‘∧’ (wedge) is the
skew-symmetric operator such that ξ̂θ = ξ×θ for the vector
cross-product × and any vector θ ∈ R3. The notation ‘∨’
(vee) denotes the inverse operator to ‘∧’, i.e., so(3) → R3.
Recall that a skew-symmetric matrix corresponds to an axis
of rotation (via the mapping a �→ â). We use the 4 × 4
matrix

gab =
[

eξ̂θab pab

0 1

]
(1)

as the homogeneous representation of gab = (pab, e
ξ̂θab) ∈

SE(3) describing the configuration of a frame Σb relative to
a frame Σa. The adjoint transformation associated with gab

is denoted by Ad(gab) [14].

A. Basic Representation for Visual Feedback System

Visual feedback systems with a fixed camera configuration
typically use four coordinate frames which consist of a world
frame Σw, a target object frame Σo, a camera frame Σc and
a hand (end-effector) frame Σh as in Fig. 1. Then, gwh =
(pwh, eξ̂θwh) ∈ SE(3), gwc = (pwc, e

ξ̂θwc) ∈ SE(3) and
gwo = (pwo, e

ξ̂θwo) ∈ SE(3) denote the rigid body motion
from Σw to Σh, from Σw to Σc and from Σw to Σo, respec-
tively. Similarly, the relative rigid body motion from Σc to
Σh, from Σc to Σo and from Σh to Σo can be represented
by gch = (pch, eξ̂θch) ∈ SE(3), gco = (pco, e

ξ̂θco) ∈ SE(3)
and gho = (pho, e

ξ̂θho) ∈ SE(3), respectively. as shown in
Fig. 1. The objective of the visual feedback control is to
bring the actual relative rigid body motion gho to a given
reference gd = (pd, eξ̂θd) which is constant in this paper. In
other words, our goal is to determine the motion of hand by
using the visual information.

The relative rigid body motion from Σc to Σo can be led
by using the composition rule for rigid body transformations
([14], Chap. 2, pp. 37, eq. (2.24)) as follows:

gco = g−1
wc gwo. (2)

The relative rigid body motion involves the velocity of each
rigid body. To this aid, let us consider the velocity of a rigid
body as described in [14]. We define the body velocity of the
camera relative to the world frame Σw as V b

wc = [vT
wc ωT

wc]
T ,

where vwc and ωwc represent the velocity of the origin
and the angular velocity from Σw to Σc, respectively ([14]
Chap. 2, eq. (2.55)).

Differentiating (2) with respect to time, the body velocity
of the relative rigid body motion gco can be written as follows
(See [5]):

V b
co = −Ad(g−1

co )V
b
wc + V b

wo (3)

where V b
wo is the body velocity of the target object relative to

Σw. In the case of the fixed camera configuration, i.e. V b
wc =

0, the model of the relative rigid body motion gco can be
rewritten as

V b
co = V b

wo. (4)

Roughly speaking, if both the camera and the target object
move, then the relative rigid body motion gco will be derived
from the difference between the camera velocity V b

wc and the
target object velocity V b

wo. Hence, the model of the relative
rigid body motion from Σc to Σo equals the target object
velocity V b

wo.

B. Estimation Error System

The relative rigid body motion gco can not be immediately
obtained in the visual feedback system, because the target
object velocity is unknown and furthermore can not be mea-
sured directly. Hence, we consider the estimation problem
of the relative rigid body motion gco. The visual feedback
control task requires information of the relative rigid body
motion gco. Since the measurable information is only the
image information f(gco) in the visual feedback system, we
consider a nonlinear observer in order to estimate the relative
rigid body motion gco from the image information f(gco).

Firstly, using the basic representation (4), we choose
estimates ḡco and V̄ b

co of the relative rigid body motion and
velocity, respectively as

V̄ b
co = ue. (5)

The new input ue is to be determined in order to drive the
estimated values ḡco and V̄ b

co to their actual values.
In order to establish the estimation error system, we define

the estimation error between the estimated value ḡco and the
actual relative rigid body motion gco as

gee = ḡ−1
co gco. (6)

Using the notation eR(eξ̂θ), the vector of the estimation error
is defined as ee := [pT

ee eT
R(eξ̂θee)]T . Note that ee = 0 iff

pee = 0 and eξ̂θee = I3. Therefore, if the vector of the
estimation error is equal to zero, then the estimated relative
rigid body motion ḡco equals the actual relative rigid body
motion gco.

Suppose the attitude estimation error θee is small enough
that we can let eξ̂θee � I+sk(eξ̂θee). Therefore, using a first-
order Taylor expansion approximation, the estimation error
vector ee can be obtained from image information f(gco)
and the estimated value of the relative rigid body motion ḡco

as follows [5]:

ee = J†(ḡco)(f − f̄), (7)

where f̄ is the estimated value of image information. In the
same way as the basic representation (4), the estimation error
system can be represented by

V b
ee = −Ad(g−1

ee )ue + V b
wo. (8)

It should be noted that if the vector of the estimation error is
equal to zero, then the estimated relative rigid body motion
ḡco equals the actual one gco.



C. Control Error Systems

In this subsection, let us consider the dual of the estimation
error system, which we call the control error system, in order
to establish the visual feedback system. We assume that gwc

and gwh can be obtained accurately by a prior calibration
procedure, then the estimated value of gho is calculated
as ḡho = g−1

ch ḡco where ḡco is the estimated value which
discussed in the previous subsection. Here, we define the
control error between the actual relative rigid body motion
gho and desired one gd as

gec = g−1
d gho. (9)

It should be noted that gho can not be measured directory.
Similar to the definition of ee, the vector of the control error
is defined as ec := [pT

ec eT
R(eξ̂θec)]T .

Here we have to consider the way of deriving gec (9),
because gho can not be measured directory. Using gee, the
control error can be transformed as

gec = g−1
d gho = g−1

d ḡ−1
ho ḡhogho = g−1

d ḡ−1
ho gee. (10)

In Equation (10), gd and ḡho While the estimation error
vector ee can be obtained as Equation (7), the estimation
error matrix gee cannot be directly obtained, because gee

is defined using non-measurable value gco as Equation (6).
Therefore, we consider the way of deriving gee from ee.

Because of the definition of the estimation error vector
ee, i.e., ee := [pT

ee eT
R(eξ̂θee)]T , the position estimation error

pee can be derived directly from ee. Under the condition
−π

2 ≤ θee ≤ π
2 , ξθee can be derived as follows [6]:

ξθee =
sin−1 ‖eR(eξ̂θee )‖

‖eR(eξ̂θee)‖ eR(eξ̂θee). (11)

Hence, gee can be derived from ee through ξθee.
The reference of the relative rigid body motion gd is

constant in this paper, i.e., ġd = 0, hence, V b
ec = V b

ho. Thus,
the control error system can be represented as

V b
ec = −Ad(g−1

ec )Ad(g−1
d )V

b
wh + V b

wo. (12)

This is dual to the estimation error system.

D. Passivity of Visual Feedback System

Combining (8) and (12), we construct the visual feedback
system as follows:[

V b
ec

V b
ee

]
=

[ −Ad(g−1
ec ) 0

0 −Ad(g−1
ee )

]
uce +

[
I
I

]
V b

wo

(13)

where uce :=
[
(Ad(g−1

d )V
b
wh)T uT

e

]T

denotes the control
input. For the design of the visual feedback system, it is
assumed that the hand velocity V b

wh can be directly chosen.
Let us define the error vector of the visual feedback system
as e := [eT

c eT
e ]T which consists of the control error vector

ec and the estimation error vector ee.
Next, we show an important relation between the input

and the output of the visual feedback system.
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Fig. 2. Block diagram of the visual feedback system.

Lemma 1: [5] If V b
wo = 0, then the visual feedback

system (13) satisfies
∫ T

0

uT
ceνcedt ≥ −βce, ∀T > 0 (14)

where νce is defined as νce := −e and βce is a positive
scalar.

Using the following positive definite function, we can
prove Lemma 1.

Vce = E(gec) + E(gee) (15)

where E(gab) := 1
2
‖pab‖2 + φ(eξ̂θab) and φ(eξ̂θab ) :=

1
2 tr(I − eξ̂θab) is the error function of the rotation matrix
(see, e.g., [13]).

The block diagram of the passivity of the visual feedback
system is shown in Fig. 2. Let us take uce as the input and
νce as its output in Fig. 2. Thus, Lemma 1 implies that the
visual feedback system (13) is passive from the input uce to
the output νce as in the definition in [15].

III. DYNAMIC VISUAL FORCE FEEDBACK CONTROL

A. Dynamic Visual Force Feedback System

The dynamics of n-link rigid robot manipulators with the
end-effector constraint can be written as follows [16]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + Jϕ(q)λ (16)

where q, q̇ and q̈ are the joint angle, velocity and acceleration,
respectively, τ is the vector of the input torque. M(q) ∈
Rn×n is the manipulator inertia matrix, C(q, q̇) ∈ Rn×n

is the Coriolis matrix and g(q) ∈ Rn is the gravity vector.
λ ∈ R is the contact force, Jϕ(q) ∈ Rn is the normalized
Jacobian of the kinematic constraint ϕ(q) = 0 ∈ R and
defined as follows.

JT
ϕ (q)q̇ = 0, Jϕ(q) =

[
∂ϕ(q)

∂q

]T

∈ Rn (17)

Equation (16) possesses several important properties which
will be used in the sequel. The manipulator dynamics (16)
is passive from τ to q̇, that is

∫ T

0
τT q̇dt ≥ −βm where

βm is a positive scalar. Moreover, Ṁ(q)−2C(q, q̇) is skew-
symmetric by defining C(q, q̇) using the Christoffel symbols.

Now, we propose the control law for the manipulator as

τ = M(q)q̈r + C(q, q̇)q̇r + g(q)
+JT

b (q)AdT
(g−1

d )
ec − Jϕλd + us + JϕuF (18)



where

q̇r := Qϕ(q)q̇d + αJϕ(q)Fe. (19)

α is positive constant and

Fe :=
∫ t

0

(
λ − λd

)
dτ =

∫ t

0

eλdτ ∈ R (20)

where eλ := λ − λd is the force error. Then, the following
relation holds with respect to about the force error

Ḟe = eλ. (21)

Because we consider the single point contact in this paper,
the projection matrix Qϕ(q) can be simply defined as

Qϕ(q) = I − Jϕ(q)JT
ϕ (q) (22)

which arises on the tangent space at the contact surface
ϕ(q) = 0 [16].

On the other hand, the body velocity of the hand V b
wh is

given by

V b
wh = Jb(q)q̇ (23)

where Jb(q) is the body manipulator Jacobian [14]. More-
over, we design the reference of the joint velocity as

q̇d := Q†
ϕ(q)

(
J†

b (q)uh − αJϕ(q)Fe

)
(24)

where uh = [vT
uh ωT

uh]T is the desired body velocity of
the hand which will be obtained from the visual feedback
system.

We define the error vector with respect to the joint velocity
of the manipulator dynamics as

s := q̇ − q̇r ∈ Rn (25)

Here, we know that the following relation holds [16]

JT
ϕ s = −αFe. (26)

Using (13)(16) and (18), the visual force feedback system
with manipulator dynamics (we call the dynamic visual force
feedback system) can be derived as follows:
⎡
⎢⎢⎣

ṡ

Ḟe

V b
ec

V b
ee

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−M−1
(
Cs− JT

b AdT
(g−1

d )
ec − Jϕeλ

)
eλ

−Ad(g−1
ho )Jbs

0

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎣

M−1 M−1Jϕ 0 0
0 0 0 0
0 0 −Ad(g−1

ec ) 0
0 0 0 −Ad(g−1

ee )

⎤
⎥⎥⎦ u +

⎡
⎢⎢⎣

0
0
I
I

⎤
⎥⎥⎦w

(27)

where

x :=

⎡
⎢⎢⎣

s
Fe

ec

ee

⎤
⎥⎥⎦ u :=

⎡
⎢⎢⎣

us

uF

Ad(g−1
d )uc

ue

⎤
⎥⎥⎦ w := V b

wo,

are defined as the state, the input and the disturbance of the
dynamic visual force feedback system, respectively. Here,
we formulate the manipulator control problem as follows:
Control problem : For the dynamic visual force feedback
system with the fixed camera configuration described by (27),
design a control input u such that

lim
t→∞ s = 0, lim

t→∞Fe = 0, lim
t→∞ ec = 0 and lim

t→∞ ee = 0.

B. Passivity of Dynamic Visual Force Feedback System

Before constructing the dynamic visual force feedback
control law, we derive an important lemma.

Lemma 2: If w = 0, then the dynamic visual force
feedback system (27) satisfies

∫ T

0

uT ν ≥ −β, ∀T > 0 (28)

where ν := Nx, N := diag{In,−α,−I6,−I6} and β is a
positive scalar.

Proof: Consider the following positive definite func-
tion

V =
1
2
sT Ms +

1
2
αF 2

e + E(gec) + E(gee). (29)

Differentiating (29) with respect to time yields

V̇ = sT Mṡ +
1
2
sT Ṁs + αFeḞe

+pT
ece

ξ̂θece−ξ̂θec ṗec + eT
R(eξ̂θec)eξ̂θecωec

+pT
eee

ξ̂θeee−ξ̂θee ṗee + eT
R(eξ̂θee)eξ̂θeeωee

= xT

⎡
⎢⎢⎣

M 0 0 0
0 α 0 0
0 0 Ad(eξ̂θec ) 0
0 0 0 Ad(eξ̂θee )

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ṡ

Ḟe

V b
ec

V b
ee

⎤
⎥⎥⎦ +

1
2
sT Ṁs.

(30)

Observing that the skew-symmetry of the matrices p̂ec and
p̂ee, i.e., pT

ecp̂ece
−ξ̂θdωud = −pT

ec(e−ξ̂θdωud)∧pec = 0,
pT

eep̂eeωue = −pT
eeω̂uepee = 0, the above equation along

the trajectories of the system (27) can be transformed into

V̇ = −sT Cṡ + sT JT
b AdT

(g−1
d )

ec + sT Jϕeλ + αFeeλ

−eT
c Ad(g−1

ho )Jbs +
1
2
sT Ṁs

+xT

⎡
⎢⎢⎣

M 0 0 0
0 α 0 0
0 0 Ad(eξ̂θec ) 0
0 0 0 Ad(eξ̂θee )

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

M−1 M−1Jϕ 0 0
0 0 0 0
0 0 −Ad(g−1

ec ) 0
0 0 0 −Ad(g−1

ee )

⎤
⎥⎥⎦ u

=
1
2
sT (Ṁ − 2C)s + eT

λ (Jϕs + αFe) + xT NT u

= xT NT u. (31)
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Fig. 3. Block diagram of the 3D dynamic visual force feedback system.

Integrating (31) from 0 to T , we obtain
∫ T

0

uT νdτ = V (T ) − V (0) ≥ −V (0) = −β (32)

where β is a positive scalar that only depends on the initial
states of s, Fe, ec and ee.
The block diagram of the passivity of the 3D dynamic visual
force feedback system is shown in Fig. 3.

Remark 1: The visual feedback system (13) satisfies the
passivity property as described in (14). It is well known
that the manipulator dynamics (16) also has the passivity.
In Lemma 2, the inequality (28) says that the dynamic
visual force feedback system (27) is passive from the input
u = [uT

s uT
F (Ad(g−1

d )uc)T uT
e ]T to the output ν = [sT −

αF T
e − eT

c − eT
e ]T as shown in Fig. 3.

C. Passivity-based Dynamic Visual Force Feedback Control

We now propose the following control input for the
interconnected system:

u = −Kν = −KNx (33)
K := diag{Ks, kF , Kc, Ke} ∈ Rn+13

where Ks := diag{ks1, · · · , ksn}, kF , Kc := diag{kc1, · · · ,
kc6} and Ke := diag{ke1, · · · , ke6} denote the positive gain
matrices.

Theorem 1: If w = 0, then the equilibrium point x = 0
for the closed-loop system (27) and (33) is asymptotic stable.

Proof: In the proof of Lemma 2, we have already
derived that the time derivative of V along the trajectory
of the system (27) is formulated as (31). Using the control
input (33), (31) can be transformed into

V̇ = −xT NT KNx. (34)

This completes the proof.
Theorem 1 shows the stability via Lyapunov method for
the dynamic visual force feedback system. It is interesting
to note that stability analysis is based on the passivity as
described in (28). Our proposed method is valid for the 3D
dynamic visual force feedback system, while previous works
[11][12] consider the 2D dynamic visual force feedback
control. Hence, we can control not only the position but also
the orientation of the robot hand with a contact force in the
visual force feedback system.
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Fig. 4. Coordinate frames for dynamic visual force feedback system with
three degree of freedom manipulator.

IV. SIMULATION RESULTS

The simulation results on 3DOF planar manipulator as
depicted in Fig. 4 are shown in order to understand our
proposed method simply, though it is valid for 3D dynamic
visual force feedback systems.

We present results for the stability analysis with a static
target object. The simulation is carried out with the condi-
tions pwo = [0.47 0.05 0]T [m], ξθwo = [0 0 0]T [rad],
pwc = [0.47 0.05 1]T [m], ξθwc = [0 0 0]T [rad]. The
lengths of the three links of the manipulator are l1 = 0.2
[m], l2 = 0.2 [m] and l3 = 0.1 [m], respectively. The initial
angles of the manipulator is set as q1(0) = −π/2 [rad],
q2(0) = π/2 [rad] and q3(0) = π/2 [rad]. In other words, the
initial relative rigid body motion is pho = [0.15 − 0.27 0]T

[m], ξθho = [0 0 −π/2]T [rad]. The desired force λd and the
desired relative rigid body motion gd = (pd, eξ̂θd) are given
by λd = 5 [N], pd = [0.03 0 0]T [m] and ξθd = [0 0 0]T

[rad] in this simulation. The initial errors of force and vision
are calculated as λe = −5 [N], pec = [0.12 − 0.27 0]T [m],
ξθec = [0 0 − π/2]T [rad], pee = [0.53 0.95 0]T [m] and
ξθee = [0 0 π/4]T [rad], respectively.

The controller parameters for Equation (33) were empir-
ically selected as Ks = diag{10, 10, 10}, kF = 25, α = 1,
Kc = diag{40, 40, 20, 20, 20, 40} and Ke = 50I6. The
simulation results are shown in Figs. 5 and 7. Figs. 5–7
illustrate the control error ec, the estimatoin error ee, and
the contact force λ, respectively. In Figs. 5 and 6, we focus
on the errors of the translations of x and y and the rotation
of z, because the errors of the translation of z and the
rotations of x and y are zeros ideally on the 3DOF planar
manipulator. The control error ec and the estimation error
ee tended to zero, thus we can confirm that the relative
rigid body motion gho coincided with the desired one gd by
using image information. In Fig. 7, the pulse siglnal means
the contact transition at around 0.2 [s]. The contact force λ
tended to 5 [N], i.e., converged to the desired one λd. From
these figures, the asymptotic stability can be also confirmed.
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respectively
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Fig. 6. The estimation error ee which defined the error between the
estimated value ḡco and the actual relative rigid body motion gco. Initial
estimation errors are peex = 0.53 [m], pecy = −0.95 [m] and ξθecz =
π/4 [rad], respectively

V. CONCLUSIONS

This paper considers 3D visual force feedback control
for fixed camera systems. In our approach, we can control
not only the position but also the orientation of the robot
hand with a contact force by using visual information.
The proposed method can be regarded as an extension of
the hybrid position/force control to the hybrid vision/force
control. The main contribution of this paper is to show that
the visual force feedback system has the passivity which
allows us to prove stability in the sense of Lyapunov. Both
the passivity of the manipulator dynamics and the passivity
of the visual feedback system are preserved in the visual
force feedback system. Finally simulation results are shown
to verify the stability of the proposed method.

�

�
��
��

�

�
��

λ

1
7
2

/

*

)

+

6

4

3

/ /04 /03/0* /05 )0/
����
1�2

�
�����
��������
�

Fig. 7. The contact force trajectory λ.
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