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Abstract— This paper deals with the image-based dynamic
visual feedback control via the passivity approach which is
investigated in the position-based one. We construct an energy
function using the error in the image plane. The passivity of
the visual feedback system is derived from the energy function.
We show passivity of the image-based dynamic visual feedback
system by combining the passivity of both the visual feedback
system and the manipulator dynamics which allows us to prove
stability in the sense of Lyapunov. The L2-gain performance
analysis, which deals with the disturbance attenuation problem,
is then considered via dissipative systems theory. This paper
suggests that the two types of classical visual servoing, i.e.
the image-based visual servoing and the position-based visual
servoing, can be discussed with the same strategy.

I. INTRODUCTION

Visual feedback control of robotic systems involves the
fusion of robot kinematics, dynamics, and computer vision to
control the motion of the robot in an efficient manner. Visual
feedback control is classified into two groups, position-
based control and image-based control [1]. In position-based
control, the references are given in the three-dimensional
Cartesian space. The control objective is to bring a relative
pose, which is the pose from a camera to a target or
from a hand to a target, to a desired pose by using image
information. In image-based control, the references are given
in an image plane.

The 2 1/2-D visual servoing which incorporates the ad-
vantages of both position-based and image-based visual
servoing is proposed in order to guarantee robustness with
respect to calibration errors [2]. Partitioned visual servoing is
considered in [3] in order to guarantee that all features remain
in the image. More recently, an approach based on switching
between position-based visual servoing and backward motion
is investigated for dealing with the field of view problem [4].
However, classical visual servoing algorithms assume that the
manipulator dynamics is negligible and does not interact with
the visual feedback loop. This assumption, while it holds for
kinematic control problems, is invalid for high speed tasks.

Maruyama et al. [5] discussed image-based robust control
for the set-point problems of the dynamic visual feedback
systems that includes the manipulator dynamics. Although
the control law guarantees Lyapunov stability and is effective
for the dynamic visual feedback system, it is restricted to
planar manipulators. For the problem of 3D visual feed-
back control, Kelly et al. [6] considered an image-based
controller under the assumption that the object’s depths are
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Fig. 1. Eye-in-hand visual feedback system.

known. Although good solutions to the set-point problem
are reported in those papers, few results have been obtained
for the tracking problem of moving target objects in the
full 3D dynamic visual feedback system. For the target
tracking problem, the authors have proposed position-based
control via passivity approach [7], [8], [9]. However, image-
based control is suitable than position-based control for some
applications. For example, in recent applications of visual
feedback system, laparoscopic surgery [10] is investigated by
image-based control, because surgeons need a field of view
of the surrounding target in the image plane. The objective
of image-based visual feedback control is to bring the image
feature points f to desired image feature points fd.

This paper deals with image-based dynamic visual feed-
back control for a moving target object in 3D workspace
with the eye-in-hand configuration as depicted in Fig. 1.
Our proposed image-based control method does not need
the assumption that the object’s depths are known, because
they are estimated by the same strategy in the position-
based dynamic visual feedback control. In Section II, we
provide an image dynamics with a brief summary of our
previous work [7]. The visual feedback system is constructed
in Section III and in Section IV, we show passivity of the
image-based dynamic visual feedback system combined with
the manipulator dynamics and present stability and L2-gain
performance analysis by using an energy function. In Section
V we present simulation results for image-based dynamic
visual feedback control on a 2DOF manipulator. Finally, we
offer some conclusions in Section VI.

II. BACKGROUND

A. Notation and Definition

Throughout this paper, we use the notation eξ̂θab ∈ R3×3

to represent the change of the principle axes of a frame Σb

relative to a frame Σa. The notation ‘∧’ (wedge) is the skew-
symmetric operator such that âb = a×b for the vector cross-
product × and any vector a, b ∈ R3, i.e., â is a 3× 3 skew-



symmetric matrix. The notation ‘∨’ (vee) denotes the inverse
operator to ‘∧’: i.e., so(3) → R3. ξab ∈ R3 specifies the
direction of rotation and θab ∈ R is the angle of rotation.
Here ξ̂θab denotes ξ̂abθab for the simplicity of notation. We
use the 4 × 4 matrix

gab =
[

eξ̂θab pab

0 1

]
(1)

as the homogeneous representation of gab = (pab, e
ξ̂θab) ∈

SE(3) which is the description of the configuration of a
frame Σb relative to a frame Σa. The adjoint transformation
associated with gab is denoted by Ad(gab) [11].

B. Basic Representation for Visual Feedback System

The visual feedback system considered in this paper has
the camera mounted on the robot’s end-effector as depicted
in Fig. 1. Thus, the whole system has three coordinate frames
which consist of a world (base of the manipulator) frame Σw,
a camera (end-effector of the manipulator) frame Σc and a
target object frame Σo. Then, the relative rigid body motion
from Σc to Σo can be represented by gco. Similarly, gwc and
gwo denote the rigid body motions from the world frame Σw

to the camera frame Σc and from the world frame Σw to the
object frame Σo, respectively, as shown in Fig. 1.

The relative rigid body motion from Σc to Σo can be led
by using the composition rule for rigid body transformations
([11], Chap. 2, pp. 37, eq. (2.24)) as follows

gco = g−1
wc gwo. (2)

The basic representation of the relative rigid body motion
involves the velocity of each rigid body. To this aid, let us
consider the velocity of a rigid body as described in [11].
Now, we define the body velocity of the camera relative
to the world frame Σw as V b

wc = [vT
wc ωT

wc]
T , where

vwc and ωwc represent the velocity of the origin and the
angular velocity from Σw to Σc, respectively ([11] Chap. 2,
eq. (2.55)).

Differentiating (2) with respect to time, the basic repre-
sentation of the relative rigid body motion gco is described
as follows [7].

V b
co = −Ad(g−1

co )V
b
wc + V b

wo (3)

where V b
wo is the body velocity of the target object relative

to Σw. Equation (3) is a standard formula for the relation
between the body velocities of three coordinate frames ([11]
Chap. 2, pp. 59, Proposition 2.15). Roughly speaking, the
relative rigid body motion gco will depend on the difference
between the camera velocity V b

wc and the target object
velocity V b

wo.

C. Image Dynamics

The pinhole camera model with a perspective projection
is shown in Fig. 2. Let λ be a focal length, poi ∈ R3 and
pci ∈ R3 be the position vectors of the target object’s i-th
feature point relative to Σo and Σc, respectively. Using a
transformation of the coordinates, we have

pci = gcopoi, (4)
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Fig. 2. Perspective projection in a simple camera model.

where pci and poi should be regarded, with a slight abuse of
notation, as [pT

ci 1]T and [pT
oi 1]T via the well-known homo-

geneous coordinate representation in robotics, respectively
(see, e.g., [11]).

The perspective projection of the i-th feature point onto
the image plane gives us the image plane coordinate fi :=
[fxi fyi]T ∈ R2 as

fi =
λ

zci

[
xci

yci

]
(5)

where pci = [xci yci zci]T . It is straightforward to extend
this model to m image points by simply stacking the vectors
of the image plane coordinate, i.e.,

f(gco) := [fT
1 · · · fT

m]T ∈ R2m (6)

and pc := [pT
c1 · · · pT

cm]T ∈ R3m. We assume that multiple
point features on a known object are given.

Differentiating (4) and (5), yields

ḟi = Ji(gco)V b
co (7)

where Ji(gco) is the image Jacobian defined by

Ji(gco) =

⎡
⎢⎢⎣

λ

zci
0 −λxci

z2
ci

0
λ

zci
−λyci

z2
ci

⎤
⎥⎥⎦ eξ̂θco

[
I3 −p̂oi

]
.(8)

Using (6) and (7), the time derivative of the image feature
vector can be denoted by

ḟ = J(gco)V b
co (9)

where

J(gco) =
[
JT

1 (gco) · · · JT
m(gco)

]T
. (10)

Hereafter we assume that the matrix J(gco) is full column
rank for all gco ∈ SE(3) and the target object has three
feature points, i.e. rank(J(gco)) = 6 and m = 3. This
assumption is required for technical reasons in stability and
L2-gain performance analyses.

The image dynamics is obtained by substituting (3) into
(9)

ḟ = −J(gco)Ad(g−1
co )V

b
wc + J(gco)V b

wo. (11)



Then, we have an important lemma about the relation be-
tween the camera body velocity and the image features.

Lemma 1: If the target object is static, i.e. V b
wo = 0, then

the following inequality holds for the image dynamics (11).∫ T

0

(V b
wc)

T (νf)dt ≥ −βf (12)

where νf := −AdT
(g−1

co )
JT (gco)f and βf is a positive scalar.

Proof: Consider the positive definite function

Vf =
1
2
‖f‖2. (13)

Differentiating (13) with respect to time yields

V̇f = fT ḟ = −fT J(gco)Ad(g−1
co )V

b
wc = (V b

wc)
T νf . (14)

Integrating (14) from 0 to T , we obtain∫ T

0

(V b
wc)

T νfdt = Vf (T ) − Vf (0) ≥ −Vf (0) := −βf (15)

where βf is a positive scalar that only depends on the initial
states of f .

D. Nonlinear Observer and Estimation Error System

The visual information f(gco) which includes the relative
rigid body motion can be exploited, while the relative rigid
body motion gco can not be obtained directly. Firstly, we
shall consider the following model which just comes from
the basic representation (3).

V̄ b
co = −Ad(ḡ−1

co )V
b
wc + ue. (16)

where ḡco and V̄ b
co are the estimated value of the relative

rigid body motion and the estimated body velocity from Σc

to Σo, respectively. ue is the input in order to converge the
estimated value to the actual relative rigid body motion. Next,
the estimation error of the relative rigid body motion from
Σc to Σo, i.e. the error between ḡco and gco, is defined as

gee = ḡ−1
co gco (17)

which is called the estimation error. Using the notation
eR(eξ̂θ), the vector of the estimation error is given by
ee := [pT

ee eT
R(eξ̂θee )]T . Note that ee = 0 iff pee = 0 and

eξ̂θee = I3. Similarly to (4) and (5), the estimated image
feature point f̄i (i = 1, 2, 3) is defined as

p̄ci = ḡcopoi, f̄i =
λ

z̄ci

[
x̄ci

ȳci

]
(18)

where p̄ci := [x̄ci ȳci z̄ci]T . f̄(ḡco) := [f̄T
1 f̄T

2 f̄T
3 ]T ∈ R6

means 3 image points case. The relation between the actual
image information and the estimated one can be given by

f − f̄ = J(ḡco)ee, (19)

where J(ḡco) has the same form as the image Jacobian
defined in (10). Similarly to J(gco), we assume that the
matrix J(ḡco) is full column rank for all ḡco ∈ SE(3).
Differentiating (17) with respect to time and using (3) and
(16), we obtain

V b
ee = −Ad(g−1

ee )ue + V b
wo. (20)

Equation (20) represents the estimation error system.
Remark 1: Generally, the image Jacobian expresses the

relation between the motion of the feature point in the image
plane and one in the workspace. As mentioned in [7], the
relation between the estimation error in the image plane and
one in the workspace can be connected by the same image
Jacobian.

III. IMAGE-BASED VISUAL FEEDBACK SYSTEM

Let us consider the image error dynamics in order to
establish the image-based visual feedback system. First, we
define the image error as follows:

fe = f̄ − fd (21)

where fd ∈ R6 denotes the desired image feature vector.
Then, the image error dynamics can be represented as

ḟe = J(ḡco)V̄ b
co

= −J(ḡco)Ad(ḡ−1
co )V

b
wc + J(ḡco)ue. (22)

Combining (20) and (22), we construct the image-based
visual feedback system as follows:[

ḟe

V b
ee

]
=

[−J(ḡco)Ad(ḡ−1
co ) J(ḡco)

0 −Ad(g−1
ee )

]
ufe +

[
0
I

]
V b

wo

(23)

where ufe := [(V b
wc)T uT

e ]T . We define the state of the
image-based visual feedback system as xfe := [fT

e eT
e ]T .

It should be noted that if the vectors of the image error
and the estimation error are equal to zero, then the image
feature vector f , the estimated image feature vector f̄ , and
the desired image feature vector fd coincide. Therefore, the
image feature vector f tends to the desired fd when xfe → 0.

Lemma 2: If the target object is static, i.e. V b
wo = 0, then

the following inequality holds for the image-based visual
feedback dynamics (23).∫ T

0

uT
feνfe ≥ −βfe (24)

where

νfe := Nfexfe, Nfe :=

[
−AdT

(ḡ−1
co )

J(ḡco)T 0
J(ḡco)T −I

]
(25)

and βfe is a positive scalar.
Proof: Consider the positive definite function

Vfe =
1
2
‖fe‖2 +

1
2
‖pee‖2 + φ(eξ̂θee) (26)

where φ(eξ̂θ) := 1
2tr(I − eξ̂θ) is the error function of

the rotation matrix (see e.g. [12]). Differentiating (26) with
respect to time yields

V̇fe =
[

fT
e eT

e

] [
I 0
0 Ad(eξ̂θee)

][
ḟe

V b
ee

]

=
[

fT
e eT

e

] [ −J(ḡco)Ad(ḡ−1
co ) J(ḡco)

0 −I

]
ufe

= uT
feνfe (27)



Integrating (27) from 0 to T , we obtain∫ T

0

uT
feνfedt = Vfe(T ) − Vfe(0) ≥ −Vfe(0) := −βfe(28)

where βfe is a positive scalar that only depends on the initial
states of fe and gee.
Let us consider ufe as the input and νfe as its output. Then,
Lemma 2 says that the image-based visual feedback system
(23) is passive from the input ufe to the output νfe.

IV. IMAGE-BASED DYNAMIC VISUAL FEEDBACK
CONTROL

A. Image-based Dynamic Visual Feedback System

The dynamics of n-link rigid robot manipulators can be
written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τd (29)

where q, q̇ and q̈ are the joint angle, velocity and acceleration,
respectively, τ is the vector of the input torque, and τd

represents a disturbance input [13]. Equation (29) possesses
several important properties which will be used in the sequel.
The manipulator dynamics (29) is passive from τ to q̇, that is∫ T

0
τT q̇dt ≥ −βm where βm is a positive scalar. Moreover,

Ṁ(q) − 2C(q, q̇) is skew-symmetric by defining C(q, q̇)
using the Christoffel symbols. The visual feedback system
(23) and the manipulator dynamics (29) will be connected
by the passivity.

Now, we will construct an image-based dynamic visual
feedback system by connecting the image-based visual feed-
back system (23) and the manipulator dynamics (29). Since
the camera is mounted on the end-effector of the manipulator
in the eye-in-hand configuration, the body velocity of the
camera V b

wc is given by

V b
wc = Jb(q)q̇ (30)

where Jb(q) is the body manipulator Jacobian [11].
Next, we propose the control law for the manipulator as

τ = M(q)q̈d + C(q, q̇)q̇d + g(q)
+Jb(q)T AdT

(ḡ−1
co )

J(ḡco)T fe + ur. (31)

where q̇d and q̈d represent the desired joint velocity and
acceleration, respectively. The first term in (31) is the com-
pensation of the nonlinear effects.

Here, let us define the error vector with respect to the joint
velocity of the manipulator dynamics as

r := q̇ − q̇d. (32)

From the above discussion, we can obtain the following error
dynamics

M(q)ṙ + C(q, q̇)r − Jb(q)T AdT
(ḡ−1

co )
J(ḡco)T fe = ur + τd.

(33)

Moreover, we design the reference of the joint velocity
based on the relation between the camera velocity and the
joint one (30) as follows:

q̇d := J†
b (q)ud (34)

where ud is the desired body velocity of the camera which
will be obtained from the image-based visual feedback
system.

Using (23) and (33), the visual feedback system with
manipulator dynamics (we call the image-based dynamic
visual feedback system) can be derived as follows:
2
4 ṙ

ḟe

V b
ee

3
5 =

2
64
−M(q)−1

“
C(q, q̇)r + Jb(q)

T AdT

(ḡ−1
co )

J(ḡco)T fe

”
−J(ḡco)Ad

(ḡ−1
co )

Jb(q)r

0

3
75

+

2
4M(q)−1 0 0

0 −J(ḡco)Ad
(ḡ−1

co )
J(ḡco)

0 0 −Ad
(g

−1
ee )

3
5 u +

2
4M(q)−10

0 0
0 I

3
5 w(35)

where u := [uT
r uT

d uT
e ]T . We define the state and the

disturbance of image-based dynamic visual feedback system
as x := [rT fT

e eT
e ]T and w := [τT

d (V b
wo)T ]T , respectively.

Before constructing the image-based dynamic visual feed-
back control law, we derive an important lemma.

Lemma 3: If w = 0, then the image-based dynamic visual
feedback system (35) satisfies∫ T

0

uT νdt ≥ −β, ∀T > 0 (36)

where

ν := Nx, N :=

⎡
⎣ I 0 0

0 −AdT

(ḡ−1
co )

J(ḡco)
T 0

0 J(ḡco)T −I

⎤
⎦ (37)

and β is a positive scalar.
Proof: Consider the positive definite function

V =
1
2
rT M(q)r +

1
2
‖fe‖2 +

1
2
‖pee‖2 + φ(eξ̂θee) (38)

Differentiating (38) with respect to time yields

V̇ = rT M(q)ṙ +
1
2
rT Ṁ(q)r + fT

e ḟe + eT
e Ad(eξ̂θee )V

b
ee

=
1
2
rT

(
Ṁ(q) − 2C(q, q̇)

)
r + rT ur

+
[

fT
e eT

e

] [ −J(ḡco)Ad(ḡ−1
co ) J(ḡco)

0 −I

] [
ud

ue

]
= uT ν. (39)

Integrating (39) from 0 to T , we obtain∫ T

0

uT νdt = V (T ) − V (0) ≥ −V (0) := −β (40)

where β is a positive scalar that only depends on the initial
states of r, fe and gee.
Lemma 3 shows that the image-based dynamic visual feed-
back system preserves the passivity of both the image-based
visual feedback system and the manipulator dynamics.

B. Dynamic Visual Feedback Control and Stability Analysis

We now propose the following control input for the
interconnected system:

u = −Kν = −KNx, K :=

[
Kr 0 0
0 Kf 0
0 0 Ke

]
(41)



where Kr := diag{kr1, · · · , krn} the positive gain matrix
for each joint axis. Kf := diag{kf1, · · · , kf6} and Ke :=
diag{ke1, · · · , ke6} are the positive gain matrix for image
errors and the positive gain matrix of x, y and z axes
of the translation and the rotation for the estimation error,
respectively.

Theorem 1: If w = 0, then the equilibrium point x = 0
for the closed-loop system (35) and (41) is asymptotic stable.

Proof: In the proof of Lemma 3, we have already
derived that the time derivative of V along the trajectory
of the system (35) is formulated as (39). Using the control
input (41), (39) can be transformed into

V̇ = −xT NT KNx. (42)

This completes the proof.
Theorem 1 shows the stability via Lyapunov method. It is
interesting to note that stability analysis is based on the
passivity as described in (36).

C. L2-Gain Performance Analysis

The motion of the target object will be regarded as an
external disturbance in our approach. Hence, we consider
L2-gain performance analysis for the image-based dynamic
visual feedback system (35) in one of the typical problems
based on the dissipative system theory, i.e. the disturbance at-
tenuation problem. Here, we define the controlled controlled
output as z = [(εx)T (ρu)T ]T where ε and ρ are positive
definite matrices to weight the state x and the auxiliary input
u directly. Now, let us define

P := NT KN − 1
2γ2

W − 1
2
‖ε‖2 − 1

2
‖ρKN‖2 (43)

where γ ∈ R is positive and W := diag{I, 0, I}. Then we
have the following theorem.

Theorem 2: Given a positive scalar γ and consider the
control input (41) with the gains Kr , Kf and Ke such that
the matrix P is positive semi-definite, then the closed-loop
system (35) and (41) has L2-gain ≤ γ.

Proof: Differentiating the positive definite function V
defined in (38) along the trajectory of the closed-loop system
yields

V̇ =
γ2

2
‖w‖2 − 1

2
‖z‖2 − γ2

2
‖w‖2 +

1

2
‖εx‖2 +

1

2
‖ρu‖2

+ xT

2
4I 0 0

0 −J(ḡco)Ad
(ḡ

−1
co )

J(ḡco)

0 0 −I

3
5 u + xT

2
4I 0

0 0
0 Ad

(eξ̂θee )

3
5 w.

By completing the squares, we have

V̇ +
1

2
‖z‖2 − γ2

2
‖w‖2

= −γ2

2

‚‚‚‚w − 1

γ2

»
I 0 0
0 0 Ad

(e−ξ̂θee )

–
x

‚‚‚‚
2

+
1

2
‖εx‖2

+
1

2γ2

‚‚‚‚
»

I 0 0
0 0 Ad

(e−ξ̂θee )

–
x

‚‚‚‚
2

+ xT NT u +
1

2
‖ρu‖2

≤ 1

2γ2
W‖x‖2 + xT NT u +

1

2
‖εx‖2 +

1

2
‖ρu‖2. (44)

Substituting the control input (41) into (44), we obtain

V̇ +
1

2
‖z‖2 − γ2

2
‖w‖2

≤ −xT NT KNx +
1

2γ2
W‖x‖2 +

1

2
‖εx‖2 +

1

2
‖ρKNx‖2. (45)

It can be verified that the inequality

V̇ +
1
2
‖z‖2 − γ2

2
‖w‖2 ≤ −xT Px ≤ 0 (46)

holds if P is positive semi-definite. Integrating (46) from 0
to T and noticing V (T ) ≥ 0, we have∫ T

0

‖z‖2dt ≤ γ2

∫ T

0

‖w‖2dt + 2V (0), ∀T > 0. (47)

This completes the proof.
We have discussed L2-gain performance analysis for a
disturbance attenuation problem. In other words, L2-gain
performance analysis is exploited to evaluate the tracking
performance of the control scheme in the presence of a
moving target.

V. SIMULATION

The simulation results on the two degree-of-freedom ma-
nipulator as depicted in Fig. 3 are shown in order to under-
stand our proposed method simply, though it is valid for 3D
visual feedback systems. The target object has three feature
points and moves for t = 4.8 [s] moves along a straight
line (0 ≤ t < 2) and a “Figure 8” motion (2 ≤ t < 4.8) as
depicted in Fig. 4 and Fig. 5, respectively. The desired image
feature points are set to fd = [−61 −61 −61 61 61 −61]T

pixels.
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Fig. 3. Coordinate frames for image-based dynamic visual feedback system
with two degree of freedom manipulator.

Firstly, we design the weight matrices concerning con-
trolled output as ε = diag{0.05, 0.05, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 1.5, 1.5, 0.25, 0.25, 0.25, 1.5}, ρ = diag{0.02, 0.02, 2,
2, 2, 2, 2, 2, 10, 10, 0.1, 0.1, 0.1, 10} × 10−3. Gains Kr ,
Kf and Ke are chosen as follows

Gain A : Kr = diag{5, 5}, Kf = 10I, Ke = 10I

Gain B : Kr = diag{20, 10}, Kf = 30I, Ke = 30I

Then, the closed-loop system (35) and (41) with gain A has
γ = 0.912 and with gain B has γ = 0.381.
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Fig. 4. Trajectory of target object
along the straight line in 0 ≤ t < 2
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Fig. 5. Trajectory of target object
along the “Figure 8” in 2 ≤ t < 4.8
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Fig. 6. Image feature point in the image plane with Gain A(left side) and
Gain B(right side).

Fig. 6 shows one of the image feature. The dashed lines
are the desired position. The estimation error is depicted in
Fig. 7. In both figures, the errors in the case of Gain A
and Gain B are shown in the left side and the right one,
respectively. Fig. 8 shows the norm of z in the case of
γ = 0.912 and γ = 0.381. In the case of γ = 0.381,
the performance is improved as compared to the case of
γ = 0.912. After all, the simulation results show that L2-gain
is adequate for the performance measure of the image-based
dynamic visual feedback control.

VI. CONCLUSIONS

This paper dealt with the image-based dynamic visual
feedback control for three dimensional target tracking with
the eye-in-hand configuration. Our proposed image-based
control method does not need object’s depths, because they
are estimated by the same strategy in the position-based
dynamic visual feedback control. The main contribution of
this paper is to show that image-based control and position-
based control can be discussed with the same passivity
approach. In future work we aim to combine image-based
control and position-based control in order to incorporate
the advantages of both methods.
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