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Abstract— This paper considers the vision-based estimation
and control with a panoramic camera via passivity approach.
First, a hyperbolic projection of a panoramic camera is pre-
sented. Next, using standard body-attached coordinate frames
(the world frame, mirror frame, camera frame and object
frame), we represent the body velocity of the relative rigid body
motion (position and orientation). After that, we propose a vi-
sual motion observer to estimate the relative rigid body motion
from the measured camera data. We show that the estimation
error system with a panoramic camera has the passivity which
allows us to prove stability in the sense of Lyapunov. After
that, stability and L2-gain performance analysis for the closed-
loop system are discussed. Finally, simulation and experimental
results are shown in order to confirm the proposed method.

I. INTRODUCTION

Vision based control uses the computer vision data to
control the motion of a robot in an efficient manner. The
combination of mechanical control with visual information,
so-called visual feedback control or visual servoing, is impor-
tant when we consider a mechanical system working under
dynamical environments [1].

Recently, Lippiello et al. [2] presented a position-based
visual servoing for a hybrid eye-in-hand/eye-to-hand multi-
camera configuration by using the extended Kalman filter and
a multiarm robotic cell. Gans and Hutchinson [3] proposed a
hybrid switched-system control which utilizes image-based
and position-based visual feedback control. Hu et al. [4]
considered a homography-based robust visual servo control
for the uncertainty of the camera calibration. In our previous
works, we discussed the dynamic visual feedback control
for 3D target tracking based on passivity [5][6]. Although
these previous works give us the new vision-based robot
control theory systematically, most of the works use a simple
perspective projection by a pinhole camera.

On the other hand, omnidirectional cameras are useful
for recognizing unknown surroundings widely. Geyer and
Daniilidis [7] presented a unifying theory for all central
panoramic systems, i.e., an equivalence of catadioptric and
spherical projections. Mariottini et al. [8] reviewed the
several epipolar geometry estimation algorithms by using
a omnidirectional camera and give us Epipolar Geometry
Toolbox which is a simulation environment with MATLAB.
Fomena and Chaumette [9] considered improvements on
modeling features for visual servoing using a spherical pro-
jection. Although these novel methods need a desired image
a priori, these works focus on the theoretical contributions.
From the more practical point of view, Vidal et al. [10]
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Fig. 1. Omnidirectional vision-based formation of mobile robots.

used motion segmentation techniques to estimate the position
of each leader for the vision-based formation control of
mobile robots with central panoramic cameras. Although
the vision-based pose synchronization has been proposed in
our previous work [11], a perspective projection model of a
pinhole camera is used in order to estimate relative poses.

This paper deals with vision-based control by using a
panoramic camera for mobile robot systems as depicted
in Fig. 1. We propose the visual motion observer with a
panoramic camera in order to estimate the relative rigid body
motion (position and orientation). The main contribution of
this paper is to show that the estimation error system with a
panoramic camera has the passivity which allows us to prove
stability in the sense of Lyapunov. After that, stability and
L2-gain performance analysis for the closed-loop system are
discussed. Finally, simulation and experimental results are
shown in order to confirm the proposed method.

II. PANORAMIC CAMERA PROJECTION

A. Hyperbolic Projection of Panoramic Camera

In this paper, we consider a panoramic camera which
consists of a pinhole camera and a hyperbolic mirror as
shown in Fig. 2. So, the pinhole camera catches reflected
images through the hyperbolic mirror. We first review the
panoramic camera model [8] in order to represent a image
feature in our framework. Visual feedback systems by using a
panoramic camera use four coordinate frames which consist
of a world frame Σw, a mirror frame Σm, a camera frame
Σc, and a object frame Σo as in Fig. 2. Let pmo ∈ R3 and
eξ̂θmo ∈ SO(3) be the position vector and the rotation matrix
from the mirror frame Σm to the object frame Σo. Then, the
relative rigid body motion from Σm to Σo can be represented
by gmo = (pmo, e

ξ̂θmo) ∈ SE(3) 1. Similarly, gwm =
(pwm, eξ̂θwm), gwc = (pwc, e

ξ̂θwc) and gwo = (pwo, e
ξ̂θwo)

denote the rigid body motions from the world frame Σw to
the mirror frame Σm, from the world frame Σw to the camera
frame Σc and from the world frame Σw to the object frame
Σo, respectively.

1The notation of the homogeneous transform is referred to [5].
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Fig. 2. Panoramic camera model (pinhole camera and hyperbolic mirror).

Here, pwo is projected at s through the origin of the camera
frame Σc, after being projected at pmh through the origin of
the mirror frame Σm as shown in Fig. 2. Let a and b be the
hyperbolic mirror parameters which satisfy

(zmh + r)2

a2
− x2

mh + y2
mh

b2
= 1 (1)

with eccentricity r =
√

a2 + b2. Eq. (1) means a constraint
with respect to pmh. The transformation to obtain the pro-
jection s in the camera frame (see, Fig. 2) is given by

s =
1

zch
Λ

(
eξ̂θcm(αe−ξ̂θwm(pwo − pwm)) + pcm

)
(2)

where α is a scalar and defined as s := [ fx fy 1 ]T ∈
R3 where fx and fy are the coordinates of x-axis and y-
axis onto the image plane, respectively [8]. In this paper,
Λ is assumed as the ideal internal calibration matrix of the
pinhole camera and defined as Λ := diag{λ, λ, 1} where λ
is a focal length.

From Fig. 2, the relation between the camera frame Σc

and the mirror frame Σm can be represented as

pcm =
[

0 0 2r
]T

, eξ̂θcm = I3 (3)

and it is assumed that these parameters are known. Moreover,
pmh can be represented as follows:

pmh = αpmo (4)

Because αpmo has to satisfy the constraint (1), the following
relation holds

(αzmo + r)2

a2
− α2x2

mo + α2y2
mo

b2
= 1. (5)

Solving (5) for α, we obtain

α(pmo) =
b2(−rzmo ± a‖pmo‖)

b2z2
mo − a2x2

mo − a2y2
mo

(6)

where α(pmo) represents that α depends on pmo explicitly2.

2Although α(pmo) has two solutions, the suitable solution will be
selected by pmo [8].
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Fig. 3. Coordinate frames for mobile robots.

From Eqs. (2) and (3) and zch = 2r+zmh, the hyperbolic
projection of the panoramic camera can be represented as

s = Λ
1

2r + α(pmo)zmo

(
α(pmo)pmo + pcm

)
(7)

where we exploit zmh = α(pmo)zmo and the composition
rule, i.e., pmo = e−ξ̂θwm (pwo − pwm).

B. Image Feature for Panoramic Camera
Let poi ∈ R3 and pmi ∈ R3 be the position vectors of

the target object’s i-th feature points (i = 1, · · · , n, (n ≥ 4))
relative to Σo and Σm, respectively (see Fig. 2). Using a
transformation of the coordinates, we have

pmi = gmopoi (8)

where pmi and poi should be regarded, with a slight abuse
of notation, as [pT

mi 1]T and [pT
oi 1]T via the well-known

homogeneous coordinate representation in robotics, respec-
tively (see, e.g., [12]).

The hyperbolic projection of the i-th feature point onto
the image plane gives us the image plane coordinate fi :=
[ fxi fyi ]T ∈ R2 as

fi =
λα(pmi)

2r + α(pmi)zmi

[
xmi

ymi

]
(9)

where α(pmi) means that pmo in Eq. (6) is replaced with
pmi = [xmi ymi zmi]T . It is straightforward to extend this
model to n image points by simply stacking the vectors of
the image plane coordinate, i.e.,

f(gmo) := [fT
1 · · · fT

n ]T ∈ R2n. (10)

and pm := [pT
m1 · · · pT

mn]T ∈ R3n. We assume that multiple
feature points on a known object are given. Although the
problem of extracting the feature points from the target
object is interesting in its own right, we will not focus on
this problem and merely assume that the image feature are
obtained by well-known techniques [13]. From Eq. (8), the
image feature f only depends on the relative rigid body
motion gmo.

III. BODY VELOCITY FOR PANORAMIC CAMERA

The relative rigid body motion gmo is discussed in this
section, because the image feature f only depends on gmo.
We recall that visual feedback systems by using a panoramic
camera use four coordinate frames and the relative rigid



body motion from Σm to Σo can be represented by gmo =
(pmo, e

ξ̂θmo) as shown in Fig. 3.
The relative rigid body motion from Σm to Σo can be led

by using the composition rule for rigid body transformations
([12], Chap. 2, pp. 37, eq. (2.24)) as follows:

gmo = g−1
wmgwo. (11)

The relative rigid body motion involves the velocity of
each rigid body. To this aid, let us consider the velocity
of a rigid body as described in [12]. We define the body
velocity of the mirror relative to the world frame Σw as
V b

wm = [vT
wm ωT

wm]T , where vwm and ωwm represent the
velocity of the origin and the angular velocity from Σw to
Σm, respectively ([12] Chap. 2, eq. (2.55)).

Differentiating (11) with respect to time, the body velocity
of the relative rigid body motion gmo can be written as
follows (See [5]):

V b
mo = −Ad(g−1

mo)V
b
wm + V b

wo. (12)

where V b
wo is the body velocity of the target object relative to

Σw. Eq. (12) is a standard formula for the relation between
the body velocities of three coordinate frames ([12] Chap. 2,
pp. 59, Proposition 2.15). Because the camera velocity V b

wc
is adequate as a input rather than the mirror velocity V b

wo
in this framework, we lead the body velocity of the relative
rigid body motion with the camera velocity.

The body velocity of the mirror frame relative to Σw will
be denoted as

V̂ b
wm = g−1

wmġwm = g−1
wmġwcgcm

= g−1
wmgwcg

−1
wc ġwcgcm = g−1

cmV̂ b
wcgcm. (13)

From the property concerning the adjoint transformation,
V b

wm can be transformed into

V b
wm = Ad(g−1

cm)V
b
wc. (14)

Thus, Eq. (12) can be transformed into

V b
mo = −Ad(g−1

mo)Ad(g−1
cm)V

b
wc + V b

wo. (15)

This is the body velocity of the relative rigid body motion
for the panoramic camera. While gcm is known information
from Eq. (3), gmo and gwo, i.e. V b

mo and V b
wo, are unknown

information in the visual feedback system. Then, the control
objective is described as follows.

Control Objective: The controlled mobile robot follows
the target robot, i.e., the relative rigid body motion gco is
coincided with the desired one gd.

Because gcm is known a priori, gco can be obtained from
gmo by the composition rule gco = gcmgmo. Thus, we
consider the estimate of gmo for the above control objective.

IV. VISION-BASED ESTIMATION

A. Image Jacobian for Panoramic Camera
Since the measurable information is only the image feature

f from the panoramic camera, we consider a visual motion
observer in order to estimate the relative rigid body motion
gmo from the image feature f . Using the body velocity of the
relative rigid body motion (15), we choose estimates ḡmo =
(p̄mo, e

ˆ̄ξθ̄mo) and V̄ b
mo of the relative rigid body motion and

velocity, respectively as

V̄ b
mo = −Ad(ḡ−1

mo)Ad(g−1
cm)V

b
wc + ue. (16)

The new input ue = [vT
ue ωT

ue]T is to be determined in order
to drive the estimated values ḡmo and V̄ b

mo to their actual
values.

Similarly to (8) and (9), the estimated image feature
f̄i (i = 1, · · · , n) is defined as

p̄mi = ḡmopoi (17)

f̄i =
λα(p̄mi)

2r + α(p̄mi)z̄mi

[
x̄mi

ȳmi

]
(18)

where p̄mi := [x̄mi ȳmi z̄mi]T . f̄(ḡmo) := [f̄T
1 · · · f̄T

n ]T
∈ R2n means the n image points case.

In order to establish the estimation error system, we define
the estimation error between the estimated value ḡmo and the
actual relative rigid body motion gmo as

gee := ḡ−1
mogmo (19)

in other words, pee = e−
ˆ̄ξθ̄mo(pmo − p̄mo) and eξ̂θee =

e−
ˆ̄ξθ̄moeξ̂θmo . We next define the error vector of the rotation

matrix eξ̂θab as eR(eξ̂θab) := sk(eξ̂θab )∨ where sk(eξ̂θab)
denotes 1

2(eξ̂θab − e−ξ̂θab). Using this notation, the vector
of the estimation error is given by ee := [pT

ee eT
R(eξ̂θee)]T .

From the above, we derive a relation between the actual and
the estimated image feature. Suppose the attitude estimation
error θee is small enough that we can let eξ̂θee � I +
sk(eξ̂θee). Then we have the following relation between the
actual feature point pmi and the estimated one p̄mi

pmi − p̄mi = e
ˆ̄ξθ̄mo

[
I −p̂oi

] [
pee

eR(eξ̂θee)

]
. (20)

Using a first-order Taylor expansion approximation, the
relation between the actual image feature and the estimated
one can be expressed as

fi − f̄i =
[

∂fi

∂xmi

∣∣
pmi=p̄mi

∂fi

∂ymi

∣∣
pmi=p̄mi

∂fi

∂zmi

∣∣
pmi=p̄mi

]
(pmi − p̄mi) (21)

where the partial differentiations ∂fi/∂xmi, ∂fi/∂ymi and
∂fi/∂zmi are represented as Eqs. (22)–(24) at the bottom of
the next page, respectively.

Let us define the image feature error as fe := f(gmo) −
f̄(ḡmo). Hence, the relation between the actual image feature
and the estimated one can be given by

fe = J(ḡmo)ee, (25)

where J(ḡmo) : SE(3) → R2n×6 is defined as

J(ḡmo) := [JT
1 (ḡmo) JT

2 (ḡmo) · · · JT
m(ḡmo)]T (26)

Ji(ḡmo) :=
[

∂fi

∂xmi

∣∣
pmi=p̄mi

∂fi

∂ymi

∣∣
pmi=p̄mi

∂fi

∂zmi

∣∣
pmi=p̄mi

]
× e

ˆ̄ξθ̄mo
[

I −p̂oi

]
.

(i = 1, · · · , n) (27)

We assume that the matrix J(ḡmo) is full column rank for all
ḡmo ∈ SE(3). Then, the relative rigid body motion can be
uniquely defined by the image feature vector. Because this
may not hold in some cases when n = 3, it is known that



n ≥ 4 is desirable for the full column rank of the image
Jacobian.

The above discussion shows that we can derive the vector
of the estimation error ee from image feature f and the
estimated value of the relative rigid body motion ḡmo,

ee = J†(ḡmo)fe (28)

where † denotes the pseudo-inverse. Therefore the estimation
error ee can be exploited in the 3D visual feedback control
law using image feature f obtained from the panoramic
camera.

Remark 1: If we select one and the imaginary unit as a
and b numerically, i.e., a = 1, b = i, then the image Jacobian
for the panoramic camera (27) equals to the pinhole’s one
[5] as follows: ∂fi

∂xmi
= λ

zmi
[1 0]T , ∂fi

∂ymi
= λ

zmi
[0 1]T ,

∂fi

∂zmi
= − λ

z2
mi

[xmi ymi]
T . Thus our previous work [5] can

be regarded as a special case of this study, although the
pinhole camera has different applications from the panoramic
one in the practical view.

B. Passivity of Estimation Error System
In the same way as Eq. (12), the estimation error system

can be represented by

V b
ee = −Ad(g−1

ee )ue + V b
wo. (29)

Then, we have the following lemma relating the input ue to
the vector form of the estimation error ee.

Lemma 1: If V b
wo = 0, then the following inequality holds

for the estimation error system (29).
∫ T

0

uT
e (−ee)dt ≥ −βe (30)

where βe is a positive scalar.
Proof: Consider the positive definite function

Ve =
1
2
‖pee‖2 + φ(eξ̂θee) (31)

where φ(eξ̂θab) := 1
2 tr(I − eξ̂θab) is the error function of

the rotation matrix [14]. Evaluating the time derivative of Ve

along the trajectories of (29) gives us

V̇e = pT
eee

ξ̂θeee−ξ̂θee ṗee + eT
R(eξ̂θee )eξ̂θeeωee

= eT
e Ad(eξ̂θee )V

b
ee = uT

e (−ee). (32)

Integrating (32) from 0 to T yields
∫ T

0

uT
e (−ee)dτ =

∫ T

0

V̇ dτ ≥ −V (0) ≥ −βe (33)

where βe is the positive scalar which only depends on the
initial state of gee.

Remark 2: Let us consider the vector form of the estima-
tion error −ee as its output. Then, Lemma 1 says that the
estimation error system (29) is passive from the input ue to
the output −ee . In fact, the body velocity of the relative rigid
body motion (15) has passivity, the estimation error system
preserves its passivity.

C. Visual Motion Observer

Based on the above passivity property of the estimation
error system, we consider the following control law.

ue = Keee (34)

where Ke := diag{ke1, · · · , ke6} is the positive gain matrix
of x, y and z axes of the translation and the rotation for the
estimation error.

Theorem 1: If V b
wo = 0, then the equilibrium point ee = 0

for the closed-loop system (29) and (34) is asymptotic stable.
Proof: Theorem 1 can be easily proved by Lemma 1,

hence the proof is omitted.
Fig. 4 shows a block diagram of the visual motion observer

with a panoramic camera. By the proposed visual motion
observer, the unmeasurable motion gco will be exploited as
the part of control law. Our proposed visual motion observer
is composed just as Luenberger observer for linear systems.

Remark 3: The estimation error vector is configured by
available information (i.e.,the measurement and the estimate)
though it is defined by unavailable one. This is one of the
main contributions of this paper.

∂fi

∂xmi
=

2rλαx(pmi)
(2r + α(pmi)zmi)2

[
xmi

ymi

]
+

λα(pmi)
2r + α(pmi)zmi

[
1
0

]
(22)

∂fi

∂ymi
=

2rλαy(pmi)
(2r + α(pmi)zmi)2

[
xmi

ymi

]
+

λα(pmi)
2r + α(pmi)zmi

[
0
1

]
(23)

∂fi

∂zmi
=

2rλαz(pmi)
(2r + α(pmi)zmi)2

[
xmi

ymi

]
− λα2(pmi)

(2r + α(pmi)zmi)2

[
xmi

ymi

]
(24)

where

αx(pmi) =
∂α(pmi)

∂xmi
=

−2a2b2rxmizmi‖pmi‖ ± ab2xmi(r2z2
mi + a2‖pmi‖2)(

b2z2
mi − a2x2

mi − a2y2
mi

)2‖pmi‖
αy(pmi) =

∂α(pmi)
∂ymi

=
−2a2b2rymizmi‖pmi‖ ± ab2ymi(r2z2

mi + a2‖pmi‖2)(
b2z2

mi − a2x2
mi − a2y2

mi

)2‖pmi‖

αz(pmi) =
∂α(pmi)

∂zmi
=

b2r(b2z2
mi + a2x2

mi + a2y2
mi)‖pmi‖ ∓ ab2zmi

(
r2(x2

mi + y2
mi) + b2‖pmi‖2

)
(
b2z2

mi − a2x2
mi − a2y2

mi

)2‖pmi‖
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Fig. 4. Block diagram of visual motion observer.

V. VISUAL MOTION OBSERVER-BASED POSE CONTROL

A. Pose Control Error System
Let us consider the dual of the estimation error system,

which we call the pose control error system, in order to
achieve the control objective. First, we define the pose
control error as follows:

gec = g−1
d gco, (35)

which represents the error between the relative rigid body
motion gco and the reference one gd. It should be remarked
that gco can be calculated by using the estimated relative
rigid body motion ḡmo, the estimation error vector ee =
[pT

ee eT
R(eξ̂θee)] and the known mirror parameter gcm equiv-

alently, although gco can’t be measured directly (see [6] for
more details). Using the notation eR(eξ̂θ), the vector of the
pose control error is defined as ec := [pT

ec eT
R(eξ̂θec)]T .

The reference of the relative rigid body motion gd is
assumed to be constant in this paper, i.e., ġd = 0 and
hence V b

ec = V b
co. Thus, the pose control error system can be

represented as

V b
ec = −Ad(g−1

ec )

(
Ad(g−1

d )V
b
wc

)
+ V b

wo. (36)

This is dual to the estimation error system. Similar to the
estimation error system, the pose control error system also
preserves the passivity property.

B. Passivity of Visual Motion Error System
Combining the estimation error system (29) and the pose

control one (36), we construct the visual motion observer-
based pose control error system (we call the visual motion
error system) as follows:[

V b
ec

V b
ee

]
=

[ −Ad(g−1
ec ) 0

0 −Ad(g−1
ee )

]
u +

[
I
I

]
V b

wo (37)

where u :=
[
(Ad(g−1

d )V
b
wc)

T uT
e

]T . Let us define the error
vector of the visual motion error system as x := [eT

c eT
e ]T

which consists of the pose control error vector ec and the
estimation error vector ee. It should be noted that if the
vectors of the pose control error and the estimation one are
equal to zero, then the actual relative rigid body motion gco

tends to the reference one gd when x → 0.
Next, we show an important relation between the input

and the output of the visual motion error system.
Lemma 2: If V b

wo = 0, then the visual motion error system
(37) satisfies ∫ T

0

uT (−x)dt ≥ −β, ∀T > 0 (38)

where β is a positive scalar.
Proof: Lemma 2 can be proved by using the positive

definite function V = 1
2
‖pec‖2 + φ(eξ̂θec) + 1

2
‖pee‖2 +

φ(eξ̂θee), hence the proof is omitted.
Remark 4: Let us take u as the input and −x as its output.

Thus, Lemma 2 implies that the visual motion error system
(37) is passive from the input u to the output −x.

C. Visual Motion Pose Control and Stability Analysis

Based on the above passivity property of the visual motion
error system, we consider the following control law.

u = Kx, K :=
[

Kc 0
0 Ke

]
(39)

where Kc := diag{kc1, · · · , kc6} is the positive gain matrix
of x, y and z axes of the translation and the rotation for the
pose control error.

Theorem 2: If V b
wo = 0, then the equilibrium point x = 0

for the closed-loop system (37) and (39) is asymptotic stable.
Proof: Theorem 2 can be easily proved by Lemma 2,

hence the proof is omitted.
Theorem 2 shows Lyapunov stability for the closed-loop
system. If the camera velocity is decided directly, the control
objective is achieved by using the proposed control law
(39). Although the dead angle problem [9] is not considered
explicitly in this framework, our proposed method will
overcome this problem by dealing with a collision avoidance
as in [11].

D. L2-Gain Performance Analysis

In this subsection, we utilize L2-gain performance analysis
to evaluate the tracking performance of the control scheme
in the presence of a moving target robot. The motion of the
target robot is regarded as an external disturbance.

In order to derive a simple and practical gain condition,
we redefine Ke = keI where ke is a positive scalar.

Theorem 3: Given a positive scalar γ, assume

kc,min >
γ2(2ke − 1) + 2(ke − 1)

2 {γ2(2ke − 1) − 1} (40)

ke >
γ2 + 1
2γ2

(41)

where kc,min means the minimum value in Kc. Then the
closed-loop system (37) and (39) has L2-gain ≤ γ.

Proof: The proof is omitted due to its similarity to the
proof of Theorem 3 in [5].
The estimation gain does not have to be restricted to a
scalar, although it cause slightly complicated gain conditions
compared with Eqs. (40) and (41). for the reason that Schur
complement can not be used. In this framework, γ can be
considered as an indicator of the tracking performance.

VI. SIMULATION AND EXPERIMENTAL RESULTS

Both the proposed estimation and control methods are
confirmed by the simulation, while the experiment is carried
out by using the proposed visual motion observer only.
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Fig. 5. Estimation error ee (Gain
A: Dashed, Gain B: Solid).
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Fig. 7. Panoramic camera. Fig. 8. Target mobile robot.

A. Simulation Results
In this subsection, we present simulation results for stabil-

ity and L2-gain performance analysis in the case of a moving
target robot. The target robot has four feature points and
moves by t = 4.8 [s]. The gains for the control law u (39)
were empirically selected as follows:

Gain A) γ = 0.123, Kc = 50I, ke = 100
Gain B) γ = 0.082, Kc = 100I, ke = 300.
The simulation results are presented in Figs. 5 and 6 which

illustrate the estimation error ee and the pose control one ec ,
respectively. In these figures, we focus on the errors of the
translations of x and y and the rotation of z. In Figs. 5 and 6,
the dashed line and the solid line are the errors in the case
of γ = 0.123 and γ = 0.082, respectively.

In the case of the static target robot, i.e., after t = 4.8
[s], all errors in Figs. 5 and 6 tend to zero. Therefore,
asymptotic stability can be confirmed through the simulation.
In the presence of the moving target robot as disturbances
by t = 4.8 [s], the tracking performance is improved for the
smaller values of γ from Figs. 5 and 6. Thus the simulation
results show that L2-gain is adequate for the performance
measure of the visual motion observer-based pose control.

B. Experimental Results
In this subsection, we describe experimental results with

respect to the proposed visual motion observer with a
panoramic camera for a static target object as shown in
Figs. 7 and 8. A panoramic camera consists of a MTV-
7310 camera and a hyperbolic mirror. The video signals
are acquired by a frame graver board PICOLO DILLI-
GENT (Euresys) and an image processing software HAL-
CON (MVTech Software GmbH).

The experiment was carried out with an appropriate initial
estimation error. The experimental results are presented in
Figs. 9 and 10. In Fig. 9, the dashed lines and the solid ones
mean the image features and the estimated ones with respect
to the x-axis, i.e., fxi and f̄xi(i = 1, · · · , 4), respectively.
The estimated image features coincide with the actual ones
after t = 1 [s]. From Fig. 10 which illustrates the estimation
error of the translations of x and y and the rotation of z,
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Fig. 9. Image features and esti-
mated ones w.r.t. the x-axis.
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Fig. 10. Estimation error ee for the
static target object with ke = 5.

we can confirm that the estimation error ee tends to zero by
using the proposed visual motion observer.

VII. CONCLUSIONS

This paper considers the vision-based estimation and con-
trol with a panoramic camera based on the passivity. The
main contribution of this paper is to show that the estimation
error system with a panoramic camera has the passivity
which allows us to prove stability in the sense of Lyapunov.
The visual motion error system which consists of the esti-
mation error system and the pose control one preserves the
passivity. Our previous work [5] can be regarded as a special
case of this study.
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