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Abstract—This paper investigates iterative learning control ~ of the existence of antagonistic bi-articular muscles through
based on passivity for two-degree-of-freedom (2DOF) robot ropot arm experiments [5], [6]. Oh and Hoet al. have
mgnlpulators with antagonistic bi-articular musc_les. Flrstly,_ a proposed some control methods for 2DOF bi-articular ma-
brief summary of dynamics of 2DOF robot manipulators with . . . .
antagonistic bi-articular muscles is given. Next, an error dynam- nipulators in .a series of papers [7]_[1,0]' Although e_ﬁ'f:'em
ics of the bi-articular manipulator for iterative learning control  control solutions based on the physical characteristics of
that has an output strictly passivity property is constructed. antagonistic bi-articular muscles have been reported, stability
Then, we propose an iterative learning control law for the bi-  analysis has not been discussed in these works. The authors
articular manipulator. The proposed torque input does not need_ have proposed passivity-based and open-loop control laws
the parameters for the accurate m(_)dels. Convergence ana_ly_S|s for 2DOF bi-articular manipulators [11], [12]. Even though
of the closed-loop system is carried out based on passivity. . ! "

Finally, simulation results are presented in order to confirm the closed-loop stability for these control laws is guaranteed,
the effectiveness of the proposed control law. the input torque needs the parameters for the accurate mod-
els.

On the other hand, iterative learning control has also

Medical robots, rehabilitation and health care robots anleen an attractive control method for improving the transient
domestic robots are expected to become a major marketsponse and tracking performance of uncertain dynamic sys-
in near future [1]. Compared to classical industrial robotdems that operate repetitively [13]. Recent examples include
these robots in the relatively new fields do not need taot only classical robots, but also robots in the relatively new
have high torque and high speed, but need strong safdtglds such as surgical assistant robots [14] and upper-limb
and reliability so as never to hurt human. In other wordsstroke rehabilitation robots [15]. Needless to say, in the new
it is indicated that classical robots are not the best choigebot fields, there exist various situations in which robots
for the next generation of robots with physical interactionexecute the same task multiple times. However, iterative
In addition, for robot application to rehabilitation therapy, itlearning control has not been applied to robot manipulators
is known that the slight difference between a human bodyith antagonistic bi-articular muscles before.
and a rehabilitation robot bears disadvantages to patients [2].In this paper, we propose an iterative learning control
In these background, robot control based on the mechanigaw based on passivity for 2DOF robot manipulators with
of human body and/or analysis of human motion has latelgntagonistic bi-articular muscles. Firstly, a brief summary of
received considerable attention. M. Kuschelal. [3] have dynamics of 2DOF robot manipulators with antagonistic bi-
presented a mathematical model for visual-haptic percepti@nticular muscles is given. Secondly, we design a torque input
of compliant objects via psychophysical experiments. Wango that an error dynamics of the bi-articular manipulator for
et al. [4] have developed a neural network-based inverdeerative learning control satisfies an output strictly passivity
optimal neuromuscular electrical stimulation controller tgroperty. Next, we propose an iterative learning control
enable the lower limb to track a desired trajectory. law based on Arimoto-type iterative learning control [16]

Antagonistic bi-articular muscles, which are passing ovehat is much efficient for motion control of classical robot
adjacent two joints and acting the both joints simultaneouslgystems. Convergence analysis of the closed-loop system is
are also known as one of the most important mechanismiiscussed based on passivity. Compared with our previous
of human motion. The two-degree-of-freedom (2DOF) robotvorks [11], [12], the proposed control law is robust in the
manipulator with antagonistic bi-articular muscles, which isense that the input torque does not need the parameters for
inspired by this mechanism, has three low-power actuatotise accurate models. Also, the proposed scheme can improve
whereas the conventional one needs two high-power actugentrol performance by incorporating prior error information
tors. This leads to safety with respect to humans who interaitcito the control for subsequent iterations. Finally, control
closely with robots. Kumamotet al. discuss the effects performance of the proposed scheme is evaluated through
asimulation results.

I. INTRODUCTION
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Fig. 1. (a) 2DOF robot arm. (b) Human arm model. Two couples of

the antagonistic mono-articular musclesfefande;, and of f> andez are  Fig. 2. Visco-elastic muscle model [SF;: output force,u;: contractile
attached to the joints of; and.J>, respectively. A couple of the antagonistic force, k;,: coefficient w.rt. elastic,b;: coefficient w.rt. viscosity,z;:

bi-articular musclesfs andes are attached to both joints of; and Ja. contracting lengthr,: radius of the joint.
be written as and u.; represent contractile forces of flexor muscles and
.. N of extensor muscles, respectively, is the radius of the
M(q)i + C(q,d)i + g(q) = T (@) pectively,

joint. k; andb; are coefficients w.r.t. elastic and viscosity,
whereg, ¢ andg are the joint angle, velocity and accelerationyespectively [5]. The contractile forces of flexor muscles and
respectively)M (¢) € R™*™ is the manipulator inertia matrix, of extensor muscles have following relationship [5]:

C(q,q) € R™™ is the Coriolis matrix,g(q) € R" is the
gravity vector andl’ € R™ is the input torque [17]. In the
case of 2DOF robot manipulators as depicted in Fig. 1 (aBecause each contractile force of flexor museje can be

up; +ue; =1, j=1,2,3. 4)

the manipulator dynamics can be given as decided by each actuator, muscle torques are defined:as
My +2M; +2RCy  2Ms + RCH G (2uyg; — 1)rp,.j = 1,2,3. Then the joint torques (3) can be
M, + RC, oM, ] [ o } transformed into
—RS2q42 —RS2(q1 + ¢2) Q1 } T = 75 + 75 — kirpqi — karp(q1 + g2)
520, 0 42 ~birpdi = bsrp(dn + ), i=12 ()
n g(malgr +mala)Cr + g(malg2)Crz | _ [ Th ! o
g(malys)Cha T |’ Here, we define the antagonistic bi-articular muscle torque
(2) 73 as follows:
where My = myl2; +mali + I, My = %(mglf]2 + 1) and T3 = M2(qg + Go) + g(m21922)012
R = malilye. my, 1, l,; and I; are the weight of the link Fksry (g1 + g2) + bsr, (41 + G2). (6)

i, the length of the linki, the distance from the center of pFrom Eqs. (2), (5) and (6), the manipulator dynamics with

a joint i to the center of the gravity point of the linkand  antagonistic bi-articular muscles, we call théearticular
the moment of inertia about an axis through the center Qhanipulator dynamigscan be derived as

mass of the link. S;, C;, S12 andC12 denotesin g;, cos ¢;, . . .
sin(qy + ¢2) andcos(q1 + ¢2), respectively. My(0)0 + Cy(6,0)6 + gy (0) + Kpb + Byt =7, (7)
Next, we consider a human arm model, which can bgnhere
simplified as three pairs of antagonistic muscles, as shown in
Fig. 1 (b). In standard robot motion control, the joint torque
T will be designed as a control input directly. On the other
hand, since a couple of bi-articular muscles are attached to

My + My +2RCy My + RCy 0
Mb(9> = Ms + RCo Moy 0 R
0 0 Mo

both joints as depicted in Fig. 2, the joint torquEsandT; 0.6 — —RS0, —RS05 0
are described as Cy(6,0) = 3%91 8 8 ;
Ti = (Ff’b - Fei)rp + (Ff3 - F€3)TP2 5. g(mllgl + mgll)Cl q1
= (upi — Uei)rp — (Ui + uei)kirpqi — (upi + uei)bitydi  gy(0) = 0 , 0= 02 ,
gz — ues)rp — (ugs + ues)kary (g1 + g2) g(maly2)Cs a -+ g

N 2/ - . -
(s + ues)barsy(n +d2), 0= 1,2 ® K, = diag {k1, k2, ks} r2 and By := diag {b1,ba, by} r2.
In Fig. 2, Fy; and F,;, j = 1,2,3 are output forces by The bi-articular manipulator dynamics (7) has following
flexor muscles and by extensor muscles, respectively. important properties [11], [12]:



A

and K, := diag{ky1, ky2,ky3} is a positive gain matrix
0 andk, € R is a positive scalar gairBin(e) represents the
% saturated function (See Appendix A). The new torque input
7, is designed later by an iterative learning control scheme.

K,

Ty ]@I}L M(q)i+C(g,)i+9(g)=T

0 Substituting Eq. (10) into Eqg. (7), we have that

!

My ()6 + Cy(6,60)0 + g(0) + Kpb + By + K,y = 7.
Bb <

(12)

Fig. 3. Block diagram of bi-articular manipulator dynamics. It should be noted that = 7, — 74 from Egs. (10) and (12)
whenf — 6,.
Property 1: Under the conditions\/; + M, > 2R and Here, we define the ideal torque input error as follows:
M, M, > R?, the inertia matrix\1,(6) preserves the positive
definiteness. Te =T = Td- 13)

Property 2: My () — 2C,(6, ) is skew-symmetric. Using Egs. (9), (12) and (13), the error dynamics of the

. - . bi-articular manipulator for iterative learning control can be
In this paper, we construct the bi-articular manipulator dyderived as

namics (7) which satisfiedf; + M, > 2R andM; M, > R2. )
Fig. 3 shows a block diagram of the bi-articular manipulator My (68)é + Cy,(8, 0)é + Kye + Byé + Ky + h (e, é) = 7e,

dynamics. (14)
I1l. PASSIVITY OF ERRORDYNAMICS FORITERATIVE ~ Where the residual dynamiés(e, ¢) is defined as follows:
LEARNING CONTROL h(e,é) = {My(6) — Mb(ed)}éd. '
Iterative learning control can make it possible to improve +{Cy(0,0) — Cv(04,04)}04 + 95(0) — gp(04).
the transient response performance of the system that oper- (15)

ates repetitively [13]. In this section, we design a torque inp h d . t the bi-articul iulator for it
so that an error dynamics of the bi-articular manipulator fo € error dynamics ol the bi-articular maniputator-for it-

iterative learning control satisfies an output strictly passivit?rat've learning cpntrol (14) has.some properties as well
property. as standard manipulator dynamics. These properties are

addressed in more detail in Appendix B.
A. Error Dynamics for Iterative Learning Control B. Passivity Property of Error Dynamics

Let us derive the error dynamics of the bi-articular manip- Next, we show an important relation between the ingut

_ulfator for iterative Ie_arn?ng control. Sl_Jppose the referencgnd the outputy of the error dynamics of the bi-articular
joint angled,; € R? is given, we consider the problem of manipulator for iterative learning control.

set-point tracking. We define the joint angle ereoe R3 . -
as Lemma 1:Given a positive scalak,, assume

e=0-—20,. (8) )\min{Bb} > ap1 + kpb; (16)
)\min{Kb} > Max {kiAMax{Mb(G)}a
(2kpa + ap2)?
4kp(Amin{Bb} — Op1 — kpb

Here, we assume that the initial joint angle and velocity are
equal to the reference ones, i.8(0) = 6,4(0) and 0(0) =

) + ah2}> (17)

64(0).

Next, we consider that the torque input of the bi-articulayvhere the constant andb are given by
manipulatorr has an ideal one; which can achieve to bring 1 .
the joint angled to the reference oné,. Substitutingd into a=3 (‘Amin{Bb} T acisup HedH + O‘hl) ’
64 in Eq. (7), the ideal torque input; can be represented b = At { My (0)} + V3ac1,
as follows:

. L . whereAnin{-} and A\.x{-} denote the minimum and max-
My(04)0a + Cy(04,0a)04 + gv(0a) + Kvba + Boba = 7. imum eigenvalues of a matrix, respectively. Then, the error
9) dynamics of the bi-articular manipulator for iterative learning

Note that it is difficult to implement the ideal torque inputcontrOI (14) satisfies

74 for the robot system in general because of the presence T T T T
of model uncertainty and frictional influence. /0 T ydt = = Jr/0 y Kyydt, VT >0, (18)

We now propose the torque input as where 3 is a positive scalar.

T=—Ryy+m, (10) Proof: Consider the following function:

where V(e é) = %éTMb(G)é + %eTKbe + k,Sin(e)T M, (0)é.
y = é+ k,Sin(e), (11) (19)



This function (19) can be transformed as
1
Viee) =g+ k,Sin(e))" My (6) (é + kpSin(e))
—%kﬁSin(e)TMb(@)Sin(e) + %eTKbe

> % (é + k,Sin(e))T Mpy(8) (é + kySin(e)
3 Cuin (50} — K20niae M(0))) [l 20)

Lemma 1 implies that the error dynamics of the bi-

articular manipulator for iterative learning control (14) is

output strictly passive from the inputr. to the outputy

as in the definition in [18]. One of the main contributions

of this paper is that we construct the error dynamics (14) to
satisfy an output strictly passivity.

IV. | TERATIVE LEARNING CONTROL FORBI-ARTICULAR
MANIPULATOR

Therefore, the function (19) satisfies positive definiteness |, ihis section, we present an iterative learning control

through the condition (17).

law for the bi-articular manipulator. Generally, the problem

Using Property 2, the time derivative of the function (19)q jterative learning control is to find a recursive form of a

along the trajectories of Eq. (14) yields

V (e, é)
= —¢"'Byé + kpe Cos(e)” My(0)é — k,Sin(e)” Kye
—k,Sin(e)” Bye + k,Sin(e)T'Cy(0,0)7e — ¢T'h (e, é)
—k,Sin(e)Th (e, &) — (¢ + k,Sin(e))T (Kyy — 7). (21)

From the property of the saturated function and Properties 3 Tf“ =1 — Kiy",

and 4, we have the following upper-bounds of each term
Eq. (21):
€T Byé < —Amin { B} ||€]1%, (22)
kpéCos(e)” My(0)é < kpAntax {Ms(0)} [[€]|*, (23)
—k,Sin(e)T Kye < —kpAmin {K3} ||Sin(e)]?, (24)
~kpSin(e)” Byé < —kpAmin {Bo} [l€] [Sin(e)[|,  (25)
k,Sin(e)Cy (6, 60)T¢é
< kyV3aca [l + kpacusup |da| 1] ISin(e)]l, (26)
—¢"h(e,é) < an [|é]|* + ans €] [[Sin(e)]|, (27)

—k,Sin(e)Th (e, é)
< ko [lé]] ISin(e)|| + paunz [|Sin(e)||” . (28)

By using Egs. (22)—(28), Eqg. (21) satisfies

T
7 (e, ¢ [Sin(e) |Sin(e) |
V (e, ¢é) S—k‘;[ ||§|| G(ky) el
+y Te—y Kyy,
where
Amin {Kp} — an2 —a— o

G (ky) = N - |

) [ —a— £z L D {By} —am} —b

From the theorem of Sylvester, it can be shown k)

with the conditions (16) and (17) is a positive definite matrix

Integrating Eq. (29) from 0 t@” yields

T T
/ lydt > V(T) — V(0) + / y' K, ydt
0

Q
Isine)| 17 ISin(e)|
*’f”{ lél }G(’%){ el }
T
> _V(O)‘F/0 yTKyy
T
==+ [ /K (30)

where 3 is the positive scalar which only depends on the

initial state ofe andé. [ |

learning control lawr ™ = F(7}, y*) in trial numberk that

eventually realizes the convergenge— 0 ask — oo [16].
In this paper, for the bi-articular manipulator, we tackle
the same problem. We now propose the following learning
control update law for the the bi-articular manipulator:

(1)

%hereKl := diag{ki1, ko, ki3 } is the positive gain matrix

for iterative learning. From Egs. (13) and (31), we can easily
derive the following relationship:

TE =1k~ Kyt (32)

Suppose that the conditions (16) and (17) of Lemma 1 are
satisfied, the following theorem concerning the convergence
of the iterative learning control for the bi-articular manipu-
lator holds.

Theorem 1:Suppose thatB, and K, satisfy Eq. (16)
and (17) andd < K; < 2Ky, then the iterative learning
control law (31) for the error dynamics of the bi-articular
manipulator guarantees the convergence’of= 0 in the
sense of al3[0,T] norm.

Proof: Multiplying both sides by the positive definite
symmetric matrixk; ' for Eq. (32) gives us
Kfl7'ek+1 =K 7k — yk.

l e

(33)

Calculating inner products of both sides of Egs. (32) and
(33), we have

(Téchl)TKl—lTelH»l

= () K T KR - 20T (34)
Integrating of both sides Eq. (34) from 0 10 yields
' T

/ (T5+1)TKZ_17'5+1dt
0 T T
= / () K ridt + / (v*)" Kiy*dt
0 T 0
-2 / (TFYTykat. (35)
0

Using the definition||z|| := fOT 2T Azdt, Eq. (35) can be
represented in terms of B, norm as

T
I s = s+ W e — 2 [ (),
(36)
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T Fig. 5. Joint errore: Dotted (Blue); withk = 1: Dashed (Purple); with
/ (T ykdt = VI — VP 4+ 1gF %, (87)  k =5: Solid (Red); withk = 12.
0 :
where we have regardéd(7") and V' (0) as V**! and V¥, 01— 7
respectively. From Egs. (36) and (37), it can be easily shown [ © /1
\ !
that ot by ;
1 \ / ]
k4112 k+1 __ k2 k k|12 /
I s+ 2VA = 2 4+ 2V — ¥ o, - o I N A
(38) Ly
/
. . \ \
From Eq. (38) and < K; < 2K, we find that the function of )(\ ’I
{75112 -, + 2V*} is @ monotonically non-increasing func- \ /N /1
tion and bounded below. Hence, it is obvious that it converges -0.05 0_4\ L e o
to a non-negative value wheh — oo. Then, the output @ o]

k|2 i k
lly H(_?Knyz) tends to zero ag — oo, I'?"y _cpnverges to Fig. 6. Trajectory of end-effector of bi-articular manipulator with= 1.
zero in the sense of &,[0,7] norm. Since it is clear that

e — 0 wheny — 0, it can be concluded that the joint errorm, m; = 6.5225 kg, m, = 2.0458 kg, I; = 0.1213

e in trial numberk converges to zero. B kgm? I, = 0.0116 kgm?, g = 0 m/s*> andr, = 0.05
Theorem 1 guarantees the convergence of the joint ahglem. The gains are selected &g = 2, K, = 0.75] and
in trial numberk to the desired oné, using the property K, = I. The coefficients w.r.t. viscosity and elastic are
that the error dynamics of the bi-articular manipulator (14), = p, = b; = 800 Ns/m andk; = ke = ks = 1400
is output strictly passive. From Theorem 1, it can be alsp/m, respectively, which are set to satisfy the Egs. (16) and
shown that the input torque errgr/||2__, tends to zero as (17). The simulation is carried out with the initial condition
k — oo. Therefore, the input torque colnverges to the ideal 6 = [0.5844 — 0.7522 — 0.1678] rad, 6 = [0 0 0] rad/s.
input 74 in the sense of d.[0,7] norm. Fig. 4 shows a We give a reference trajectory so that the end-effector of the
block diagram of the iterative learning controller. It shouldbi-articular manipulator moves along a “Figure 8" motion.
be noted that the ideal input torqug does not need in  The simulation results are presented in Figs. 5-8. Fig. 5
practice as shown in Fig. 4 even though it is assumed itghows the joint erroe. The dotted, dashed and solid lines
existence theoretically. denote the errors applying the update control law in trial

Since the iterative learning control approach is generally toumberk = 1, £ = 5 and & = 12, respectively. Figs. 6-8
improve the transient response and tracking performance fdepict the trajectory of the end-effector of the bi-articular
the repeatability, the control performance of the proposeuanipulator in trial numbek = 1, £ = 5 and &k = 12,
control law for the bi-articular manipulator should be im-respectively. The dashed lines in Figs. 6—-8 show the reference
proved with increasing the trial number. The control lawdrajectory. From Figs. 5-8, it is clear that the joint error
proposed in [11] and [12] depend on the parameters for tliecreases with increasing repetition. The trajectory of the
accurate models. On the contrary, the proposed law (10) ardd-effector of the bi-articular manipulator in trial number
(31) does not need the desired dynamics compensation terkn,= 12 almost coincides with the reference trajectory.
ie., Mb(ad)éd+0b(9d,éd)éd + g»(684). Therefore, thanks to Therefore, the effectiveness of the iterative learning control
learning, it can be found that the proposed controller in thiw can be verified through the simulation results.
paper is more robust than that in the previous ones. This is
one of the main advantages of this work. VI. CONCLUSIONS

This paper proposes iterative learning control based on
passivity for 2DOF robot manipulators with antagonistic

In this section, we present simulation results for thdi-articular muscles. The main contribution of this paper
iterative learning control with a 2DOF bi-articular planaris to show that the iterative learning control law, which
manipulator. The parameters of the bi-articular manipulataran improve tracking performance for the repeatability, is
arel; =0.26 m,ly = 0.26 m, [;; = 0.0983 m, [;o = 0.0229 designed for the bi-articular manipulator without the pa-

V. SIMULATION RESULTS
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1C (2, 2)w — Cy(y, v)w|| < o1z = vl|[jw]]
Facellz —yllllwl=[l,(43)

for all vectorsv, w, z, y, z € R>.

Property 4: There exist constants;, a2 > 0 such that

the

norm of the residual dynamics satisfies

1 (e, €) | < an [[él] + anz [ISin(e)]], (44)

for all e, ¢ € R3.

(1]
(2]

(3]

(4]

(5]

(6]

7
rameters for the accurate models. Based on output stnctlg/]
passivity, convergence analysis of the closed-loop system
is discussed. Simulation results are presented to verify thé!

control performance of the proposed control scheme.

APPENDIX
A. Saturated Function

Sin(e) represents the saturated function as follows [19]:

Sin(e) = [Sin(e1), Sin(ez), Sin(es)] " , (39)
1 e > 5
Sin(e;) = ¢ sin(e;) el < 5 (40)
-1 e < -3,
LSI;(G) = Cos(e)
‘= diag{Cos(e1), Cos(ez2), Cos(es)}. (41)

In this paper, the saturated functidtin(e) satisfies the

following properties:

[Sin(e)|| < [le]| , (42a)
[Sin(e)[| < V'3, (42b)
[Sin(e)||* < Sin(e) e, (42¢)
[[Cos(e)ell < llé]f , (42d)

for all e, ¢ € R3.

B. Properties of Error Dynamics

9]
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