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Abstract— This paper considers RISE control for two-degree-
of-freedom (2DOF) human lower limb with antagonistic bi-
articular muscles. The antagonistic bi-articular muscles strad-
dle the waist joint and the knee joint in the lower limb. Because
the nonlinear model of the lower limb of the human body is
uncertain, a robust control method is developed yield semi-
global asymptotic tracking. Simulation results indicate that the
torques in joint 2 of the 2DOF lower limb is lower than the
previous method, because of antagonistic bi-articular muscles.
It is verified that the 2DOF lower limb can move to the desired
position in the presence of unmodeled bounded disturbances.

I. INTRODUCTION

Rehabilitation robotics aims at developing novel solutions

for assisted therapy and objective functional assessment of

patients with reduced motor and/or cognitive abilities [1].

In particular, neuro-prostheses to replace motor function

after disease or injury has been a major research area in

rehabilitation engineering [2], [3]. Neuromuscular electrical

stimulation (NMES), which is also called functional electri-

cal stimulation (FES), is one technique employed to generate

desired muscle contractions via electrical stimulus [4].

Models of the human limb can be used to design feedfor-

ward and feedback controllers. T. Schauer et al. [3] proposed

estimated nonlinear models of the electrically stimulated

quadriceps muscle group under nonisometric conditions.

M. Ferrarin et al. [6] developed an adaptive feedforward

controller for a nonlinear dynamic model of the lower limb.

N. Sharma et al. [4], [5] developed a neural network-

based nonlinear NMES tracking controller for a human

limb in the presence of a nonlinear uncertain muscle model

with nonvanishing additive disturbances. In these works, the

human limb is modeled as one degree of rotational freedom

about the knee joint.

Kumamoto et al. model and examine the effect antago-

nistic bi-articular muscles [7]–[9]. Antagonistic bi-articular

muscles act between the waist joint and the knee joint in the

lower limb. If the lower limb is modeled with antagonistic

bi-articular muscles, then lower torques at a each joint are

expected. The motion of the lower limb produced by antag-

onistic bi-articular muscles approaches the human motion in

NMES. Oh et al. considered two-degree-of-freedom(2DOF)

control for robot manipulators with antagonistic bi-articular
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muscles [10], [11]. In these works, the stability analysis

has not been discussed. Passivity-based control and open-

loop control are considered in [12], [13]. However, these

proposed control laws are composed of parameters of the

whole dynamical model of the human upper limb.

In this paper, RISE control for a 2DOF human lower

limb with antagonistic bi-articular muscles is considered. The

lower limb is modeled similar to a 2DOF robot manipulator,

where the number of control inputs is three. The model

is slightly different from previous works [12], [13] in the

coefficient of velocities, however, the developed model is

similar to the model of [10]. Because the model parameters

of the lower limb of the human body cannot be measured

exactly, the robust integral of the sign of the error (RISE)

methods [4], [5], [14], [15] are applied. The proposed RISE

based controller is composed of PID controller, the integral

of the sign of the error, and one of the model parameters. In

the stability analysis, the region of attraction is expanded by

using one of the model parameters in proposed controller.

It is expected that the 2DOF lower limb with antagonistic

bi-articular muscles can be controlled with lower torque at a

joint. The simulation results show that the 2DOF lower limb

with antagonistic bi-articular muscles can move with lower

torques in joint 2. Simulation results verify that the 2DOF

lower limb can move to the desired position in the presence

of unmodeled bounded disturbances.

The organization of this paper is as follows. The problem

formulation and the model are shown in Section 2. In

Section 3, the stability of the 2DOF robot manipulators with

antagonistic bi-articular muscle is presented. In Section 4,

simulation results are indicated. Finally, our conclusions are

presented.

II. PROBLEM FORMULATION

Consider the dynamics of n-link rigid robot manipulators

which can be represented as

M(q)q̈ + C(q, q̇)q̇ + g(q) + Td = T, (1)

where M(q) ∈ Rn×n is the positive definite inertia matrix,

and q, q̇ and q̈ are the joint angles, velocities, and acceler-

ations, respectively. The vector C(q, q̇)q̇ ∈ Rn represents

the Coriolis and centrifugal torques, g(q) ∈ Rn is the

gravitational torques, Td ∈ Rn is a general disturbance

(e.g., unmodeled effects), and T ∈ Rn is the control input

[14], [16]. From Fig. 1, when n = 2, terms in the dynamic



equation (1) are

q =

[

q1

q2

]

, T =

[

T1

T2

]

, Td =

[

Td1

Td2

]

,

M(q) =

[

M1 + 2M2 + 2RC2 2M2 + RC2

2M2 + RC2 2M2

]

,

C(q, q̇) =

[

−RS2q̇2 −RS2(q̇1 + q̇2)
RS2q̇1 0

]

,

g(q) =

[

g(m1lg1 + m2l1)S1 + g(m2lg2)S12

g(m2lg2)S12

]

,

where M1 = m1l
2
g1 + m2l

2
1 + Ĩ1, M2 = 1

2
(m2l

2
g2 + Ĩ2)

and R = m2l1lg2. Si, Ci, Sij and Cij mean sin qi, cos qi,

sin(qi + qj) and cos(qi + qj) (i, j = 1, 2), respectively. mi ,

li, lgi and Ĩi are the weight of the link i, the length of the

link i, the distance from the center of the joint i to the center

of the gravity point of the link i, and the moment of inertia

about an axis through the center of mass of the link i.

Fig. 1. (a)2DOF robot leg. (b)Human leg model. Two couples of the
antagonistic mono-articular muscles of f1 and e1 , and of f2 and e2 are
attached to the joints of J1 and J2, respectively. A couple of the antagonistic

bi-articular muscles f3 and e3 are attached to both joints of J1 and J2.

ki

uei/fi

Fei/fi

xi
(i = 1, 2, 3)

lplp

Fig. 2. Visco-elastic muscle model [8]. Fei/fi: output force, uei/fi:
contractile force, ki: coefficient w.r.t. elastic, xi: contracting length, lp:

radius of the joint pulley.

The human leg model can be represented as three pairs of

antagonistic muscles as shown in Fig. 1. In the robot motion

control, the joint torque T directly works as the control input.

A couple of bi-articular muscles is connected to both the

attached waist joint and the knee joint in the human leg

model as shown in Fig. 2. The joint torques are indicated as

Ti = (Fei − Ffi)lp + (Fe3 − Ff3)lp, (i = 1, 2), (2)

where Ffi and Fej (i = 1, 2) indicate the forces by the

flexor muscle and the extensor muscle, respectively in Fig.

2. By using the contractile force of the flexor muscle ufi

and the contractile force of the extensor muscle uei, Eq. (2)

is derived as follows

Ti = (uei − ufi)lp − (uei + ufi)kil
2
pqi + (ue3 − uf3)lp

−(ue3 + uf3)k3l
2
p(q1 + q2), (i = 1, 2), (3)

where lp and ki are the radius of the joint, coefficient w.r.t.

elastic [7]. Note that the joint torques (3) is close to the

model of [10], although the coefficient bj is utilized in [12],

[13]. The ufi and uei have the following relation [8]

ufi + uei = 1, (i = 1, 2, 3). (4)

Because only the contractile force of the extensor muscle uei

can be controlled by an actuator, ufi = 1−uei is substituted

into Eq. (3)

Ti = (2uei − 1)lp − kil
2
pqi

+(2ue3 − 1)lp − k3l
2
p(q1 + q2)

= τi + τ3 − kil
2
pqi − k3l

2
p(q1 + q2), (i = 1, 2), (5)

where τi is defined as τi = (2uei − 1)lp. We suggest the

antagonistic bi-articular muscles torque as

τ3 = M2(q̈1 + q̈2) + g(m2lg2)S12 + k3l
2
p(q1 + q2). (6)

From Eqs. (1), (5), (6), the manipulator dynamics with

antagonistic bi-articular muscles which is called the bi-

articular manipulator dynamics [12] as shown in Fig. 1.

Mb(θ)θ̈ + Cb(θ, θ̇)θ̇ + gb(θ) + Krθ + τd = τ, (7)

where the elements of Mb(θ) ∈ R3×3, Cb(θ, θ̇) ∈ R3×3 and

gb(θ) ∈ R3, τd ∈ R3, τ ∈ R3, θ ∈ R3 are derived as follows

Mb(θ) =





M1 + M2 + 2RC2 M2 + RC2 0
M2 + RC2 M2 0

0 0 M2



 ,

Cb(θ, θ̇) =





−RS2q̇2 −RS2(q̇1 + q̇2) 0
RS2q̇1 0 0

0 0 0



 ,

gb(θ) =





g(m1lg1 + m2l1)S1

0
g(m2lg2)S12



 , Kr = l2p





k1 0 0
0 k2 0
0 0 k3



 ,

τd =





τd1

τd2

τd3



 , τ =





τ1

τ2

τ3



 , θ =





q1

q2

q1 + q2



 ,

Kr means the matrices w.r.t. elastic. It is assumed that θ(t),
θ̇(t) are measurable and Kr is known parameter. Mb(θ),
Cb(θ, θ̇), and gb(θ) are unknown model, τd is unmodeled



bounded disturbances. In addition, the bi-articular manipula-

tor dynamics has following property.

Property 1: Under the condition M1 + M2 > 2R and

M1M2 > R2, the inertia matrix Mb(θ) preserves the positive

definiteness.

Property 2: The disturbance τd term and its first two

derivatives are bounded (i.e., τd, τ̇d, τ̈d ∈ L∞) [4], [5].

For the bi-articular manipulator dynamics (7), the objec-

tive is to converge to the desired position in the presence of

unmodeled bounded disturbances.

III. STABILITY OF BI-ARTICULAR MUSCLES

The desired position is defined as θd, the position tracking

error is indicated as

e1 = θd − θ. (8)

The tracking errors about the velocity, acceleration are de-

fined as e2, r, respectively

e2 = ė1 + α1e1, r = ė2 + α2e2. (9)

From Eqs. (8)–(9), the following relationships are derived

θ̇ = −e2 + θ̇d + α1e1, (10)

θ̈ = −r + θ̈d + α1ė1 + α2e2. (11)

Substituting Eqs. (10) and (11) into the bi-articular manipu-

lator dynamics (7) yields

Mb(−r + θ̈d + α1ė1 + α2e2) + Cb(−e2 + θ̇d + α1e1)

+gb + Krθ + τd = τ. (12)

Then, Eq. (12) becomes

Mbr = h + Krθ + Mbα2e2 − Cbe2 + τd − τ, (13)

where the nonlinear function h is defined as

h = Mb(θ̈d + α1ė1) + Cb(θ̇d + α1e1) + gb. (14)

The auxiliary function fd and h̄ are defined as

fd = Mbθ̈d + Cbθ̇d + gb, (15)

h̄ = h − fd = Mbα1ė1 + Cbα1e1. (16)

The nonlinear function (14) is rewritten as

h = fd + h̄, (17)

and when Eq. (17) is substituted into (13), the bi-articular

manipulator dynamics become

Mbr = Mbα2e2 − Cbe2 + h̄ + fd + Krθ + τd − τ. (18)

The derivative of Eq. (18) is given by

Mbṙ = −1

2
Ṁbr + Ñ + Nd − e2 + Krθ̇ − τ̇ , (19)

where unmeasurable auxiliary terms Ñ and Nd are defined

as

Ñ = −1

2
Ṁbr + Ṁbα2e2 + Mbα2ė2

−Ċbe2 − Cbė2 + ˙̄h + e2 + τ̇d, (20)

Nd = ḟd. (21)

The mean value theorem is applied to upper bound Ñ as

‖Ñ‖ ≤ ρ (‖y‖) ‖y‖, (22)

where y(t) ∈ R3 is defined as

y =
[

eT
1 eT

2 rT
]T

, (23)

and the bounding function ρ (‖y‖) ∈ R is a positive, globally

invertible, nondecreasing function. From qd(t), q̇d(t), q̈d(t),...
q d(t) ∈ L∞ are bounded, the known positive constants

ζ1, ζ2 ∈ R exist as follows

‖Nd‖ ≤ ζ1, ‖Ṅd‖ ≤ ζ2. (24)

Remark 1: While Nd and Ṅd are unmeasurable as shown

Eq. (21), it is assumed that Nd and Ṅd are bounded in order

to design a controller’s parameter.

The input torque based on RISE control law is proposed

as follows

τ (t) = kse2(t) + Krθd(t) + ν(t),

ν̇(t) = ksα2e2(t) + βsgn(e2(t)) + Krα1e1(t), (25)

where ks ∈ R, β ∈ R denote positive constant gains.

Remark 2: The controller (25) is different from a standard

RISE controller used in [5] with respect to the terms Krθd

and Krα1e1(t). Though it is difficult to obtain the correct

parameters of Kr , adding the terms Krθd and Krα1e1(t) is

useful to enlarge the region of attraction.

The derivative of (25) is

τ̇ = ksr + βsgn(e2) + Krα1e1 + Krθ̇d. (26)

Substituting Eq. (26) into Eq. (19), the closed loop system

is

Mbṙ = −1

2
Ṁbr + Ñ + Nd − e2

−Kre2 − ksr − βsgn(e2). (27)

The domain D ∈ R3n+1 containing Φ(t) = 0 is defined,

where Φ(t) is defined as

Φ(t) =
[

yT (t)
√

P (t)
]T

, (28)

where P satisfies the following property as [5]

Ṗ = −rT (Nd − βsgn(e2)) , (29)

P (0) = β

n
∑

i=1

|e2i(0)| − e2(0)T Nd(0). (30)

Then, the main result of this paper is stated.

Theorem 1: Consider the system described by the bi-

articular manipulator dynamics (18) and control law (25). It

is assumed that all system signals are bounded. The position

tracking errors are regulated in the sense that

‖e1‖, ‖e2‖, ‖r‖ → 0 as t → ∞, (31)

for the region of attraction D

D =
{

Φ ∈ R3n+1|‖Φ‖ ≤ ρ−1
√

2λ3ks

}

, (32)



where ρ is defined in Eq. (22)

λ3 = min







2λmin(α1) − 1
λmin(α2) + λmin(Kr) − 1

1

2
ks







. (33)

The gain ks is designed sufficiently large, and β is selected

according to the following condition

β > ζ1 +
1

λmin(α2)
ζ2, (34)

and α1, α2 are selected as

λmin(α1) >
1

2
, λmin(α2) > 1 − λmin(Kr), (35)

where λmin(·) is minimum eigenvalue, and ρ > 0 depends

on unmeasurable uncertainties.

Proof: A continuously differentiable positive definite

function for the system is proposed

VL(Φ, t) = eT
1 e1 +

1

2
eT
2 (I + Kr) e2 +

1

2
rT Mbr + P. (36)

The time derivative of the function (36) along the trajec-

tories (27) is obtained as follows

V̇L(Φ, t) = 2eT
1 (e2 − α1e1) + eT

2 (r − α2e2)

+rT

{

−1

2
Ṁbr + Ñ + Nd − e2 − Kre2

−ksr − βsgn(e2)

}

+
1

2
rT Ṁbr + Ṗ + eT

2 Kr(r − α2e2)

= 2eT
1 e2 − 2eT

1 α1e1 − eT
2 α2e2 + rT Ñ

+rT Nd − rT ksr − rT βsgn(e2) + Ṗ

−eT
2 Krα2e2. (37)

The dynamics (29) is substituted into (37)

V̇L(Φ, t) = 2eT
1 e2 − 2eT

1 α1e1 − eT
2 (I + Kr)α2e2

+rT Ñ − rT ksr. (38)

By using ks is scalar, the following relation is satisfied from

(22)

2eT
1 e2 ≤ ‖e1‖2 + ‖e2‖2, (39)

the function (38) is given by

V̇L(Φ, t) ≤ ‖e1‖2 + ‖e2‖2 − 2eT
1 α1e1

−eT
2 (I + Kr)α2e2 + rT Ñ − ks‖r‖2. (40)

The following properties are satisfied

eT
1 α1e1 ≥ λmin(α1)‖e1‖2 (41)

eT
2 (I + Kr)α2e2 ≥ (λmin(α2) + λmin(Kr)) ‖e2‖2, (42)

and the relation is also derived satisfied from Eq. (22) as

follows

‖rT Ñ‖ ≤ ρ (‖y‖) ‖r‖‖y‖. (43)

The function (40) is can be described as follows

V̇L(Φ, t) ≤ ‖e1‖2 + ‖e2‖2 − 2λmin(α1)‖e1‖2

− (λmin(α2) + λmin(Kr)) ‖e2‖2

+ρ (‖y‖) ‖r‖‖y‖ − ks‖r‖2

≤ − (2λmin(α1) − 1) ‖e1‖2

− (λmin(α2) + λmin(Kr) − 1) ‖e2‖2

−1

2
ks‖r‖2 −

(

1

2
ks‖r‖2 − ρ (‖y‖) ‖r‖‖y‖

)

.

(44)

By using the completing square, the following relation is

obtained

1

2
ks‖r‖2 − ρ (‖y‖) ‖r‖‖y‖

=
1

2
ks

(

‖r‖ − ρ

ks

‖y‖
)2

− 1

2

ρ2

ks

‖y‖2. (45)

From the relation (45), the function (44) is translated into

V̇L(Φ, t) ≤ − (2λmin(α1) − 1) ‖e1‖2

− (λmin(α2) + λmin(Kr) − 1) ‖e2‖2

−1

2
ks‖r‖2 +

1

2

ρ2

ks

‖y‖2

≤ −λ3‖y‖2 +
ρ2

2ks

‖y‖2

≤ −U(Φ), (46)

where λ3 is defined as

λ3 = min







2λmin(α1) − 1
λmin(α2) + λmin(Kr) − 1

1

2
ks







, (47)

and U(Φ) is a continuous semi-positive function, which is

defined as follows for some positive constant c

U(Φ) = c‖y‖2. (48)

Note that U(Φ) is valid for the region of attraction D

D =
{

Φ ∈ R3n+1|‖Φ‖ ≤ ρ−1
√

2λ3ks

}

. (49)

Then, the following relation is satisfied

c‖y(t)‖2 → 0, t → ∞, ∀y(0) ∈ D. (50)

Therefore, e1, e2, r satisfy the following condition [17]

‖e1(t)‖, ‖e2(t)‖, ‖r(t)‖ → 0, t → ∞. (51)

Remark 3: The norms of Nd and Ṅd are bounded and

unmeasurable in Eq. (24). Thus, the gain β should be

designed to be large along the relation Eq. (34).

Remark 4: In the nonlinear function Eq. (14), if Krθ is

added as follows

h = Mb(θ̈d + α1ė1) + Cb(θ̇d + α1e1) + gb + Krθ, (52)



then, Eq. (47) becomes

λ3 = min







2λmin(α1) − 1
λmin(α2) − 1

1

2
ks







(53)

by using the previous work [5]. Therefore, the region of

attraction D by Eq. (47) obtained from our proposed method

can be larger than one by Eq. (53) obtained from the previous

work [5].

IV. SIMULATION

In this section, the performance of the proposed control

law in section 3 is verified. The model parameters are given

as m1 = 7.0 [kg], m2 = 4.0 [kg], l1 = 0.4 [m], l2 = 0.5
[m], lg1 = l1/2 [m], lg2 = l2/2 [m], Ĩ1 = 0.093 [kg · m2],
Ĩ2 = 0.083 [kg · m2], lp = 0.08 [m], k1 = 4688 [N/m],
k2 = 3125 [N/m], k3 = 6250 [N/m]. The control parameters

are designed

α1 =





5 0 0
0 5 0
0 0 5



 , α2 =





5 0 0
0 5 0
0 0 5



 ,

ks = 20, β = 1. (54)

The initial conditions are given as q1(0) = 0 [rad], q2(0) = 0
[rad], q̇1(0) = 0 [rad/s], q̇2(0) = 0 [rad/s] and the constraint

of q2 is −π ≤ q2 ≤ 0 [rad], because the limitation of the

lower limb. The references are selected as qd1 = π
4

[rad],

qd2 = −π
2

[rad]. The simulation results are obtained by using

MATLAB.

Figs. 3–4 show the step responses without disturbance

τd where the solid line and dashed line represents the

bi-articular manipulator dynamics (7) and the manipulator

dynamics (1), respectively. From the results, it is derived

that θ = θd (t → ∞) is achieved and errors e1, e2 and r
converge to zero. Though the input torque τ1 is larger than

input torque T1, the input torque τ2 is smaller than input

torque T2. To flex the knee joint J2, the input torque τ3

by the bi-articular muscle f3 works instead of τ2. Fig. 5

indicates that the function VL shown in Eq. (36) is positive

definite function.
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Fig. 3. Step responses of joint angles without disturbance (qd1 =
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Fig. 5. Positive definite function (36) without disturbance

Second, the step responses with the unmodeled dynamics

are verified in Figs. 6–7 where the solid line and dashed

line show the response without disturbances and the response

with disturbances, respectively. It is assumed that a distur-

bance τd is muscle contraction model [7] as

τd = Br θ̇, (55)

where

Br = 0.03×





300 0 0
0 200 0
0 0 400



 . (56)

Note that the muscle contraction model have already been

shown in previous research [3], [7]. Because the purpose of

simulations is disturbance attenuation by the proposed RISE

controller, it is assumed that Br θ̇ is an unmodeled dynamics.

Fig. 6 shows the RISE control for the bi-articular ma-

nipulator dynamics (7), the responses of the passivity-based

control [12] are indicated in Fig. 7. The transient property

of RISE control is the same as no disturbance response. On

the other hand, in the passivity-based control, the transient

properties are different from no disturbance responses. Fig.

8 also indicates the trajectories with disturbances. The RISE

control can raise a lower limb without swinging of the ankle.



0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20
−2

−1.6

−1.2

−0.8

−0.4

0

0.4

time [s]

q
1

[r
a
d

]
q
2

[r
a
d

]

Fig. 6. Step responses of joint angles with disturbances by using proposed

controller
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Fig. 7. Step responses with disturbances by using passivity-based controller

V. CONCLUSIONS

This paper considered RISE based 2DOF robot manip-

ulators with antagonistic bi-articular muscles. The lower

limb which is modeled by using the model of 2DOF robot

manipulators was considered where the number of control

inputs is three. The RISE methods was applied, because

the unmodeled disturbances of the lower limb of the human

body exist. The stability analysis was indicated by using the

proposed controller. It was shown that the errors converge to

zero. The simulation result indicated that the errors converge

to zero, the high torque at the joint 2 is not needed by using

antagonistic bi-articular muscles, and the RISE control can

move to the desired position in the presence of additive

disturbances. In the future works, we would like to verify

the fatigue by using the antagonistic bi-articular muscles in

experiments.
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