安定化予測視覚フィードバック制御に対する ナビゲーション関数を用いた目標位置姿勢生成

正員村尾 俊幸* 非会員河合 宏之** 非会員藤田 政之***

Stabilizing Predictive Visual Feedback Control via Image Space Navigation Function

Toshiyuki Murao*, Member, Hiroyuki Kawai**, Non-member, Masayuki Fujita***, Non-member

This paper investigates stabilizing receding horizon control via an image space navigation function for three-dimensional (3-D) visual feedback systems. Firstly, we describe the representation of a relative rigid body motion and a camera model. Next, the visual motion error system is reconstructed in order to apply to time-varying desired motion. Then, visual motion observer-based stabilizing receding horizon control for 3-D visual feedback systems is proposed. Moreover, a path planner to be appropriate for the visual motion error system is designed through an image space navigation function to keep all features into the camera field of view. The main contribution of this paper is to show that the path planner which always remains in the camera field of view during the servoing is designed for the position-based visual feedback receding horizon control based on optimal control theory. Finally, we present simulation and actual nonlinear experimental results in order to verify control performance with visibility maintenance of the proposed control scheme.

キーワード:視覚フィードバック制御, Receding Horizon 制御, ナビゲーション関数, 受動性, 安定性 Keywords: visual feedback control, receding horizon control, navigation function, passivity, stability

1. はじめに

近年,視覚フィードバック制御は工場だけでなくより複 雑なシステムや幅広い分野,例えば医療分野や生命化学の 分野においても適用が見込まれるようになってきている⁽¹⁾。 これらの視覚フィードバック制御の研究に対しては,特に Chaumette⁽²⁾がカメラ視野等の問題に対して議論して以来, ますます盛んにより有効的な制御則が提案されており,多 くの研究成果がここ数年においても発表されている⁽³⁾⁻⁽⁵⁾。 そのなかでも,オンラインで有限時間区間の最適制御問

* 産業技術大学院大学 産業技術研究科
〒 140-0011 東京都品川区東大井 1-10-40
School of Industrial Technology, Advanced Institute of Indus-
trial Technology
1–10–40 Higashi-Ohi Shinagawa-ku, Tokyo 140–0011
** 金沢工業大学 工学部
〒 924-0838 石川県白山市八束穂 3-1
College of Engineering, Kanazawa Institute of Technology
3–1 Yatsukaho Hakusan, Ishikawa 924–0838
*** 東京工業大学 大学院理工学研究科
〒 152-8550 東京都目黒区大岡山 2-12-1
Graduate School of Science and Engineering, Tokyo Institute
of Technology
2–12–1 Ookayama Meguro-ku, Tokyo 152–8550

題を繰り返し解く,モデル予測制御(6)を視覚フィードバッ クシステムに展開した発展的な手法も最近では研究されて いる。Sauvée らは非線形モデル予測制御を一般的な画像 ベース法の視覚フィードバック制御に適用させ (7), さらに 文献(8)において超音波画像を用いた手術用器具の制御に 展開している。Allibert ら⁽⁹⁾は内部モデル制御構造におけ るモデル予測制御の提案だけでなく,予測するための視覚 フィードバック制御のモデルについても複数挙げ比較検討 している。しかし,上述の研究は安定性について十分な議 論がなされていない。著者らは従来研究⁽¹⁰⁾⁽¹¹⁾において, 安定性を保証した視覚フィードバックシステムのモデル予 測制御則を提案している。しかし,外乱がある場合におい ても再計算することにより最適な安定化制御入力を適用で きる文献(10)(11)の手法は,制御の途中でカメラ視野から 画像特徴点が外れる可能性があるという問題⁽²⁾ に対しては 議論されていなかった。

一方,カメラ視野の問題に対する軌道生成の手法も様々 な形で提案されており,なかでもナビゲーション関数といわ れる人工的なポテンシャル関数を用いる手法が,局所的な 極小点への収束を避ける有効な手法として議論されている。 このナビゲーション関数を用いた視覚フィードバック制御の 例としては大きく二つに分類でき,一つは Cowan らが提

Fig. 1. Visual feedback system with an eye-in-hand configuration.

案している制御則の生成に直接ナビゲーション関数を用い る手法である。文献(12)ではロボットマニピュレータに対 して,ナビゲーション関数を用いた視覚フィードバック制御 則が提案されている。さらに文献(13)では,Eye-in-Hand と固定カメラの両構造を同じ形式で扱える球体を用いたモ デルに対して上記の手法を提案している。もう一つは制御 則に与える目標値生成に対してナビゲーション関数を適用 させる手法である。Chen ら⁽¹⁴⁾は画像空間上のナビゲー ション関数を用いて目標軌道を生成し,2-1/2D視覚フィー ドバック制御則に適用させている。これらの手法はカメラ 視野の問題に対して有効な手段として提案されているが, 制御則の最適性は考慮されていない。

そこで,本研究では Fig. 1 に示すような 3 次元の視覚 フィードバックシステムに対して,画像空間上のナビゲー ション関数を用いた安定化モデル予測制御則を提案する。は じめに,目標位置姿勢が時変となる場合の受動性に基づく 視覚フィードバックシステムに対して,安定化モデル予測 制御を提案する。さらに,カメラ視野の中に常に画像特徴 点を保持できるように,画像空間上のナビゲーション関数 を用いることでその目標位置姿勢を生成する。画像空間上 の偏差ではなく相対位置姿勢の偏差を用いる本論文の安定 化予測視覚フィードバック制御においては,目標画像を与 える文献(14)の手法に対して,目標値を相対位置姿勢で与 える点と,モデル予測制御を用いることで最適性を陽に考 慮することができる点で大きく異なる。また文献(10)(11) の制御手法と比較すると,常に画像特徴点をカメラ視野に 保持できるという利点がある。

本論文の構成は以下のとおりである。2節では,時変の 目標位置姿勢に対する安定化予測視覚フィードバック制御 について提案する。3節では,画像空間上のナビゲーショ ン関数を用いた目標位置姿勢生成をおこなう。4節と5節 でシミュレーション結果と実験結果をそれぞれ示し,最後 に6節でまとめをおこなう。

2. 安定化予測視覚フィードバック制御

2・1 剛体運動の表現とカメラモデル 本論文では,

Fig. 2. Pinhole camera model.

Fig. 1 に示すような,三つの座標系によって表される Eyein-Hand 構造の視覚フィードバックシステムについて考え る。基準とする座標系として基準座標系 Σ_w ,カメラにカメ ラ座標系 Σ_c ,観測対象に観測対象座標系 Σ_o を定義する。 また,任意の二つの座標系 Σ_a から Σ_b の位置 $p_{ab} \in \mathcal{R}^3$ と姿勢を表す回転行列 $e^{\hat{\xi}\theta_{ab}} \in SO(3)$ を要素に持つ同次表 現 g_{ab} を以下のように定義する。

$$g_{ab} = \begin{bmatrix} e^{\hat{\xi}\theta_{ab}} & p_{ab} \\ 0 & 1 \end{bmatrix} \in \mathcal{R}^{4 \times 4} \cdots \cdots \cdots \cdots \cdots (1)$$

ただし,演算子 ∧(wedge) は 3 次元ベクトルを 3 × 3 の 歪対称行列へ写像する演算子であり,その逆写像は ∨(vee) で定義される⁽¹⁵⁾。

カメラ座標系からみた観測対象の相対位置姿勢 g_{co}は同 次表現の合成則から以下のように導かれる。

また,カメラ座標系からみた観測対象の相対速度は,g_{co}を 時間微分することで,

 $V_{co}^{b} = -\operatorname{Ad}_{(q_{cc}^{-1})} V_{wc}^{b} + V_{wo}^{b} \cdots \cdots \cdots \cdots \cdots \cdots (3)$

のように導かれる $^{(16)}$ 。ここで, $V^b_{ab} = (g^{-1}_{ab}\dot{g}_{ab})^{\vee} \in \mathcal{R}^6$ は剛体運動のボディ速度を表しており, $\operatorname{Ad}_{(g_{ab})} \in \mathcal{R}^{6 \times 6}$ は同次表現 g_{ab} の随伴写像である $^{(15)}$ 。

一方,上述の相対位置姿勢 g_{co} は観測対象の位置姿勢 g_{wo} が測定不可能であるために未知情報となる。本論文では,観測出力として得られる情報はピンホールカメラ (Fig. 2 参照) から得られる画像特徴量とし,観測対象に取り付けられた4点の特徴点の画像面上における x 座標とy 座標を考える。このとき,観測対象座標系 Σ_o の原点から各特徴点までのベクトルを $p_{oi} \in \mathcal{R}^3 (i = 1, \dots, 4)$ とすると,カメラからみた相対的な特徴点 $p_{coi} \in \mathcal{R}^3 (i = 1, \dots, 4)$ は $p_{coi} = g_{co}p_{oi}$ で表される。ただし,特徴点 p_{oi} はすべて既知であるとし,同次表現でよく用いられる表記法 $([p_{ab}^T \ 1]^T$ を p_{ab} と表記⁽¹⁵⁾) により表したものである。

画像特徴量を $f_{coi} := [f_{coxi} f_{coyi}]^T (i = 1, \dots, 4)$ と定 義すると,特徴量は透視変換を用いることで,

$$f_{coi} = \frac{1}{z_{coi}} \begin{bmatrix} \lambda \alpha_x & 0\\ 0 & \lambda \alpha_y \end{bmatrix} \begin{bmatrix} x_{coi}\\ y_{coi} \end{bmatrix} \cdots \cdots \cdots (4)$$

で表される。ただし, $\lambda \in \mathcal{R}$ はカメラの焦点距離, $\alpha_x, \alpha_y \in \mathcal{R}$ は1 画素の実質的な縦横の大きさの逆数であり, p_{coi} の各要素を $p_{coi} = [x_{coi} \ y_{coi} \ z_{coi}]^T$ として表した。この f_{coi} を縦に並べたベクトル $f_{co} = [f_{co1}^T \ \cdots \ f_{co4}^T]^T \in \mathcal{R}^8$ が実際にカメラから得られる視覚情報となる。

2・2 視覚フィードバック偏差システム 一般的な 位置ベース法の視覚フィードバックシステムの制御目的は, カメラ座標系 Σ_c からみた観測対象座標系 Σ_o の相対位置 姿勢 g_{co} を目標位置姿勢 g_{cd} に常に一致させておくことで ある。ただし,目標位置姿勢 g_{cd} は時変とするが,実シス テムを考慮に入れ,最終値は一定値とする。制御則を構成 するに当たり g_{co} を直接得ることはできないので, g_{co} の 推定値 \bar{g}_{co} を得るために (3) 式に基づいたつぎの視覚オブ ザーバを構成する。

 $u_e \in \mathcal{R}^6$ は推定偏差の振舞いを安定にするために加えられる入力であり,後に制御則の一部として提案する。

ここで,制御偏差 g_{ec} と推定偏差 g_{ee} をつぎのように定義する。

$g_{ec} := g_{cd}^{-1} g_{co} \cdots \cdots$	(6)
$g_{ee} := \bar{g}_{co}^{-1} g_{co} \cdots \cdots$	(7)

また, $r_{ei} := \operatorname{sk}(e^{\hat{\xi}\theta_{ei}})^{\vee} \in \mathcal{R}^3$, $\operatorname{sk}(e^{\hat{\xi}\theta_{ei}}) := \frac{1}{2}(e^{\hat{\xi}\theta_{ei}} - e^{-\hat{\xi}\theta_{ei}})$ を用いて,制御偏差ベクトルを $e_c := [p_{ec}^T r_{ec}^T]^T \in \mathcal{R}^6$ と,推定偏差ベクトルを $e_e := [p_{ee}^T r_{ee}^T]^T \in \mathcal{R}^6$ と定義する。推定偏差ベクトル e_e は視覚情報 f_{co} と推定値 \bar{g}_{co} からつぎのように得ることができる。

$$e_e = J_e^{\dagger}(\bar{g}_{co})(f_{co} - \bar{f}_{co})\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(8)$$

ここで, \bar{f}_{co} は画像特徴量 f_{co} の推定値を表し, $J_e(\cdot)$ は画像ヤコビアンの一種である⁽¹⁶⁾。また,目標値 g_{cd} と推定偏差ベクトル e_e を用いると,制御偏差ベクトル e_c は計算可能である⁽¹¹⁾。

視覚フィードバック偏差システムは(6)(7)式を時間微分 することで下記のように導出することができる。

$$\begin{bmatrix} V_{ec}^b \\ V_{ee}^b \end{bmatrix} = \begin{bmatrix} -\operatorname{Ad}_{(g_{ec}^{-1})} & 0 \\ 0 & -\operatorname{Ad}_{(g_{ee}^{-1})} \end{bmatrix} u + \begin{bmatrix} I \\ I \end{bmatrix} V_{wo}^b(9)$$

ただし,入力を

$$u := [u_c^T \ u_e^T], \quad u_c := \operatorname{Ad}_{(g_{cd}^{-1})} V_{wc}^b + V_{cd}^b \cdots (10)$$

と定義している。目標位置姿勢を時不変としていた文献 (10)(11)の視覚フィードバック偏差システムと本論文の偏 差システム(9)は同じ形となっているが,(10)式にあるよ うに,入力 uの一部に目標位置姿勢の速度(以下では,目 標速度とする)V^b_{cd}が陽に入るところが従来研究と異なる。 Eye-in-Hand 構造の視覚フィードバック偏差システムにお いて,状態 $x := [e_c^T e_e^T]^T$ を0にとどめておくことで相対 位置姿勢 g_{co} が目標位置姿勢 g_{cd} に一致することになる。 この視覚フィードバック偏差システム(9)は観測対象が静 止(すなわち $V_{wo}^b = 0$)しているとき,入力 uから出力 -xに対して受動性を有することを,以下のエネルギー関数を 用いることで証明することができる。

ここで $E(g_{ab}) := \frac{1}{2} \|p_{ab}\|^2 + \phi(e^{\hat{\xi}\theta_{ab}})$ であり, 関数 $\phi(e^{\hat{\xi}\theta_{ab}})$ は回転行列に対する誤差関数を表す正定関数である⁽¹⁷⁾。

2・3 安定化予測視覚フィードバック制御 本節で は,視覚フィードバック偏差システム(9)の閉ループ系を安 定化させるモデル予測制御則を提案する。本論文では,視 覚フィードバック偏差システム(9)に対し,ある時刻tの とき,状態 $x(t) = x_0$,入力 $u(\tau, x(\tau)), \tau \in [t, t+T]$ に関 してつぎの評価関数を最小化する有限時間区間の最適制御 問題を考える。

ただし,R(t)は対角行列とし, $E_{qi}(g_{ei}(t)) :=$

 $q_{pi}(t) || p_{ei}(t) ||^2 + q_{ri}(t) \phi(e^{\hat{\xi}\theta_{ei}(t)}), i = c, e$ である。初期 状態 x_0 に対して,この評価関数を計算することにより求 められる最適な入力を $u^*(\tau, x(\tau)), \tau \in [t, t+T]$ と表す。 モデル予測制御では,初めのサンプリング周期である δ 秒 だけシステムに $u^*(\tau, x(\tau))$ を加える。そして δ 秒後には, その時刻を改めて t とし,再び最適制御問題を解く。すな わち,モデル予測制御は

という入力を,時刻を進めながら繰り返し加えていくことになる⁽⁶⁾。

視覚フィードバック偏差システム (9) と (15) 式のモデ ル予測制御則との閉ループ系に関して,つぎの定理が成り 立つ。

[定理 1] Eye-in-Hand 構造の 3 次元視覚フィードバッ ク偏差システム (9) に対して (12) ~ (14) 式の評価関数を 考える。観測対象が静止しており $(V_{wo}^b = 0)$, $\|\theta_{ec}\| \le \frac{\pi}{2}$, $\|\theta_{ee}\| \le \frac{\pi}{2}$, $\rho^2 I \ge 4QR$ であるならば, 視覚フィードバッ ク偏差システム (9) と, 評価関数 (12) ~ (14) に対して解 かれるモデル予測制御則 (15) で構成される閉ループ系の 平衡点 x = 0 は漸近安定である。

この定理1は評価関数の終端コスト $\rho V(x)$ が制御リアプノフ関数であることを利用することで,目標位置姿勢 g_{cd} が時変となっても,文献(10)(11)と同様の手法で証明す

ることができる。モデル予測制御が最適制御理論を発展させた理論であるということに注目すると,評価関数のパラ メータを適切なものに選ぶことで,望まれる制御性能を陽 に得られると考えられる。

3. 画像空間上のナビゲーション関数を用いた目標 位置姿勢生成

3.1 目標速度の設計 画像面上の偏差を減らす画 像ベース法に比べ,作業空間上で偏差を定義する位置ベー ス法の視覚フィードバック制御は,画像特徴点をカメラ視 野内に常に留めておくことが難しい⁽²⁾。提案した安定化予 測視覚フィードバック制御則は偏差を画像空間ではなく作 業空間で定義しているため,カメラを制御している途中で カメラ視野から画像特徴点を外してしまう可能性がある。 本節では,常にカメラ視野内に画像特徴点を維持するよう な,安定化予測視覚フィードバック制御に適した画像空間 上のナビゲーション関数を用いた軌道生成について述べる。 最終的な目標位置姿勢を g_{cd_f} と定義すると,本システム の制御目的はカメラ視野内に全ての画像特徴点が維持され, かつ g_{cd_f} に収束するような時変の目標位置姿勢 g_{cd} を生 成し,それに対して g_{co} を一致させることとなる。

提案した視覚フィードバック制御則(15)と(10)式で表 される偏差システムの入力により,実際のカメラへの入力 はつぎのように構成される。

ここで, $u^{RH} = [(u_c^{RH})^T (u_e^{RH})^T]^T$ とした。目標位置姿勢 g_{cd} も制御入力には必要となるが, g_{cd} は

を解くことにより生成することができるため , 目標位置姿 勢 g_{cd} の速度 V^b_{cd} を設計すれば , カメラ入力 V^b_{wc} を生成 できる。

今,あるカメラ位置姿勢に対して全ての観測対象の特徴点 が視野内に留まる特徴点の集合を $D \subset \mathcal{R}^8$ と,また画像特徴 量の目標値を $f_{cd} := [f_{cdx1} f_{cdy1} \cdots f_{cdx4} f_{cdy4}]^T \in \mathcal{R}^8$ とすると, D の中に f_{cd} が常に属するような目標速度 V_{cd}^b を設計する必要がある。ここで,目標画像特徴量の最終値 $f_{cd_f} := [f_{cd_fx1} f_{cd_fy1} \cdots f_{cd_fx4} f_{cd_fy4}]^T \in \mathcal{R}^8$ は D の 内部に時不変な値として存在すると仮定する。 $f_{cd} \in D$ と なるような目標速度を生成するために,つぎで定義される ナビゲーション関数という特殊人工ポテンシャル関数を導 入する。

【定義1】 $^{(13)(14)}$ 滑らかなモース関数 $\varphi(f_{cd})$: $D \rightarrow [0, 1]$ が以下の性質を有するとき , φ はナビゲーション 関数である。

(1) f_{cd_f} のとき唯一の最小値が存在する。

(2) D の境界で最大値を持つ。

このナビゲーション関数を用いて目標速度 V^b_{cd} を設計するために,画像空間上で定義される目標画像特徴量ベクト

ル f_{cd} と作業空間上で定義される目標位置姿勢 g_{cd} の間の 関係性を導出する。目標位置姿勢におけるカメラからみた 相対的な特徴点を $p_{cdi} = [x_{cdi} \ y_{cdi} \ z_{cdi}]^T$ と表すと,目標 画像特徴量は

$$f_{cdi} = \frac{1}{z_{cdi}} \begin{bmatrix} \lambda \alpha_x & 0\\ 0 & \lambda \alpha_y \end{bmatrix} \begin{bmatrix} x_{cdi}\\ y_{cdi} \end{bmatrix} \dots \dots \dots \dots (18)$$

となる。(18) 式を時間微分することで,目標画像特徴量 f_{cdi} と目標特徴点の位置 p_{cdi} の間に

$$\dot{f}_{cdi} = \begin{bmatrix} \frac{\lambda \alpha_x}{z_{cdi}} & 0 & -\frac{\lambda \alpha_x x_{cdi}}{z_{cdi}^2} \\ 0 & \frac{\lambda \alpha_y}{z_{cdi}} & -\frac{\lambda \alpha_y y_{cdi}}{z_{cdi}^2} \end{bmatrix} \dot{p}_{cdi} \cdots \cdots (19)$$

が成り立つ。さらに, $p_{cdi} = g_{cd}p_{oi}$ であることから,目標 特徴点の位置 p_{cdi} と目標速度 V^b_{cd} との間の関係式として つぎの式が得られる。

$$\dot{p}_{cdi} = e^{\hat{\xi}\theta_{cd}} \begin{bmatrix} I & -\hat{p}_{oi} \end{bmatrix} V^b_{cd} \cdots \cdots \cdots \cdots \cdots (20)$$

これらより,

が成り立つ。ここで, $J_L(g_{cd}): SE(3) \rightarrow \mathcal{R}^{8 \times 6}$ は

で表される。

この導出された (21) 式の関係とナビゲーション関数の定 義より,目標速度 V_{cd}^b をつぎのように設計する。

$$V_{cd}^{b} = -k_{cd}J_{L}^{\dagger}(g_{cd})\nabla\varphi(f_{cd})\cdots\cdots\cdots\cdots\cdots\cdots(24)$$

ここで, $\nabla \varphi(f_{cd}) := \left(\frac{\partial \varphi(f_{cd})}{\partial f_{cd}}\right)^T$ は $\varphi(f_{cd})$ の勾配ベクトルを表している。また $k_{cd} \in \mathcal{R}$ は正のゲインである。設定するナビゲーション関数 $\varphi(f_{cd})$ は付録 1 に示す。

本手法は, (24) 式の目標速度と (17) 式で解かれる目標 位置姿勢 g_{cd} を用いて,予測視覚フィードバック制御則が 適用できることになる。次節では,この目標位置姿勢 g_{cd} がその最終値 g_{cd_f} に収束し,かつ目標画像特徴量 f_{cd} が カメラ視野内に常に収まっていることを議論する。

3・2 目標位置姿勢の収束解析 目標速度 (24) を (21) 式に代入することで,目標画像特徴量のトラジェクトリー はつぎのように表されることになる。

$$\dot{f}_{cd} = -k_{cd}J_L(g_{cd})J_L^{\dagger}(g_{cd})\nabla\varphi(f_{cd})\cdots\cdots(25)$$

ここで, $\nabla \varphi(f_{cd}) \notin NS(J_L^T(f_{cd}))$ という仮定を設ける。 NS(·) は零空間演算子を表し, $\nabla \varphi(f_{cd})$ が $J_L^T(f_{cd})$ の零 空間に入らないということを表している。

上記の仮定を設けることにより,設計した目標軌道に関 してつぎの定理が成り立つ。

Fig. 3. Block diagram of stabilizing predictive visual feedback control with image space navigation function-based path planner.

[定理 2] $f_{cd}(0) \in D$ かつ $\nabla \varphi(f_{cd}) \notin NS(J_L^T(f_{cd}))$ を 保証するように目標特徴点が選ばれたとする。このとき, (25) 式によって生成される目標画像トラジェクトリーは $f_{cd}(t) \in D$ であり,かつ目標位置姿勢 $g_{cd}(t)$ は漸近安 定な平衡点 g_{cd_f} を持つ。

証明:つぎの正定な関数を考える。

(25)式の解軌道に沿って時間微分することにより,つぎの 関係式が得られる。

$$\dot{V}_{n}(f_{cd}(t)) = (\nabla \varphi)^{T} \dot{f}_{cd}
= -k_{cd} (\nabla \varphi)^{T} J_{L} J_{L}^{\dagger} \nabla \varphi
= -k_{cd} (J_{L}^{T} \nabla \varphi)^{T} (J_{L}^{T} J_{L})^{-1} J_{L}^{T} \nabla \varphi
< -k \| J_{L}^{T} \nabla \varphi \|^{2} \cdots \cdots \cdots \cdots \cdots \cdots \cdots (27)$$

ここで, $k||a||^2 \leq k_{cd} a^T (J_L^T J_L)^{-1} a$, $\forall a \in \mathcal{R}^6$ という関係 を用いており,k はある正の定数を表している。この (27) 式は $V_n(f_{cd})$ が下記の意味で非増加関数であるということ を表している。

(26)~(28) 式から,いかなる初期状態 $f_{cd}(0) \in D$ に対して も, $f_{cd}(t) \in D$, $\forall t > 0$ となることがわかる。したがって, ラサールの定理を用いることで, $\|J_L^T(f_{cd})\nabla\varphi(f_{cd})\| = 0$ を満足する正の不変集合が原点のみとなることが判明す る。 $\nabla\varphi(f_{cd}) \notin NS(J_L^T(f_{cd}))$ という仮定を置いている ことから, $\|\nabla\varphi(f_{cd})\| = 0$ が示される。付録 1 節より, $\nabla\varphi(f_{cd}) \rightarrow 0$ のとき $f_{cd}(t) \rightarrow f_{cd_f}$ となるために, $f_{cd}(t) \rightarrow f_{cd_f}$ が証明される。さらに,画像特徴点を 4 点取ることで,画像特徴量 f_{ab} から相対位置姿勢 g_{ab} の幾 何学的な解は唯一存在するため, $f_{cd}(t) \rightarrow f_{cd_f}$ となるこ とから $g_{cd}(t) \rightarrow g_{cd_f}$ が導かれる。

定理 2 はナビゲーション関数をリアプノフ関数候補と することで証明している。この定理 2 により,画像空間上 のナビゲーション関数を用いた軌道生成をおこなうことで, 目標位置姿勢 $g_{cd}(t)$ が 最終目標位置姿勢 g_{cd_f} に,カメ ラ視野を維持したまま収束することが示された。Fig. 3 に 画像空間上のナビゲーション関数を用いた安定化予測視覚 フィードバック制御のプロック図を示す。

視覚フィードバック制御の中でも位置姿勢の偏差をフィー ドバックする手法は,画像空間上の偏差に基づいて制御則が 構成されるわけではないため,制御中に画像面から特徴点 が外れる可能性がある。最適な安定化制御入力を視覚フィー ドバックシステムに適用した著者らの従来研究⁽¹⁰⁾⁽¹¹⁾にお いても,同様の問題を抱えていた。しかし,この位置ベース 法は目標画像を事前に必要とはせず,またこれまでに提案 されているロボットの多様な位置制御の方法と組み合わせ 易いことから有益な手法として知られている⁽¹⁾。したがっ て,特徴点を常にカメラ視野内に維持することができる画 像空間上での目標軌道生成と,最適理論を元にした作業空 間中での偏差を用いた安定化予測視覚フィードバック制御 を組み合わせる本提案手法の適用範囲は広いと考えられる。

本研究において,(21)式で用いている目標画像特徴量ベクトルの微分値 \dot{f}_{cd} と目標速度 V^b_{cd} を関連づけるヤコビアン $J_L(\cdot)$ と,(8)式で用いている推定偏差ベクトル生成のために一次テーラー近似を用いて導出したヤコビアン $J_e(\cdot)$ が全く同じ形を取っていることは非常に興味深い[†]。これは文献(18)で導出したヤコビアン $J(\cdot)$ を用いることで,全方位カメラを用いた視覚フィードバック制御においても,本論文で提案した手法を同じ方法で適用できることを示唆している。

また,本稿ではマニピュレータダイナミクスを陽に考慮 していないが,文献(10)(11)ではマニピュレータダイナミ クスも考慮した安定化予測視覚フィードバック制御を提案 している。本稿では紙面の都合上割愛したが,同様の方法 により,陽にマニピュレータのダイナミクスを考慮しなけ ればならないシステムに対しても,本手法を適用すること が可能となる。

4. シミュレーション検証

本節では,提案した制御手法のシミュレーション検証 をおこなう。初期設定は $p_{co} = [0.2 \ 0.2 \ -1.35]^T$ m, $\xi \theta_{co} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ rad とする。また最終的な目標位置 姿勢は p_{cd_f} = $\begin{bmatrix} -0.22 & -0.31 & -1.35 \end{bmatrix}^T$ m , $\xi heta_{cd_f}$ = $[0 \ 0 \ \pi/2]^T$ rad とする。これは観測対象が相対的にカメ ラ視野の端から端に90度回転して動く設定となってい る。画像ピクセル値の最大値及び最小値は $f_{xM} = 240$ pixel, $f_{xm} = -240$ pixel, $f_{yM} = 320$ pixel, $f_{ym} =$ -320 pixel とした。さらに,本シミュレーションにおける 評価関数の重みは以下のように設定した。 $q_{pc} = 0.003$, $q_{rc} = 0.001$, $q_{pe} = 0.0003$, $q_{re} = 0.0001$, R =diag{0.105, 0.105, 15, 15, 15, 0.105, 300, 300, 30, 30, 30, 30, 300}。また , $\rho^2 I \ge 4 QR$ という条件式を満たすように $\rho = 1$ とし, *u^{RH}* をリアルタイムで求めるための最適化ソフト **ウェアは**C/GMRES⁽¹⁹⁾ を用いた。制御入力は 2 ms 毎に 更新され,その間に u^{RH} は計算されなければならない。予 測ホライズンの長さは $T=0.04~{
m s}$ と設定した。一方,目 標軌道生成のためのゲインは $k_{cd}=6000000$, $K_s=0.1I$, $\kappa = 2$ と設定した。

[†] このヤコビアン *J_e*(·) の更なる詳細は文献(16) を参照されたい。

Fig. 5. Trajectory of image feature points (Solid: with proposed method, Dashed: with previous one $^{(10)}$).

Fig. 6. Pose control error.

Fig. 4 に提案手法を視覚フィードバックシステムに適用 した場合の,状態 x のユークリッドノルム ||x|| を示す。初 期姿勢では目標位置姿勢に一致しているため $\|x(0)\| = 0$ であるが,目標位置姿勢がナビゲーション関数によって変 化するため,ノルム ||x|| も変化する。Fig. 4 より,目標位 置姿勢に収束した後の定常状態において平衡点 x = 0 に収 束していることが確認される。したがって,目標位置姿勢 が変化した場合において,予測視覚フィードバック制御則 u^{RH} の漸近安定性が示された。

Table 1. Values of the integral cost with simulation results.

Control Scheme	cost
Passivity based Control	10.3159
Receding Horizon Control $(T = 0.04 [s])$	0.5826
Receding Horizon Control $(T = 0.4 [s])$	0.5813
Receding Horizon Control $(T = 1 [s])$	0.5799

Fig. 5 に画像特徴量 fco のトラジェクトリーを示す。図中 の実線が提案手法により目標軌道を与えたとき,破線が従来 手法⁽¹⁰⁾となる時不変の目標値を与えたときのトラジェクト リーとなっている。 $f_{co}(0) := [f_1^T(0) \ f_2^T(0) \ f_3^T(0) \ f_4^T(0)]^T$ $\mathcal{E} f_{co}(1.5) := [f_1^T(1.5) f_2^T(1.5) f_3^T(1.5) f_4^T(1.5)]^T \ \mathsf{LZ}$ れぞれ特徴量の値の初期値と最終値を表しており,また図 中の長方形がカメラ視野内を表している。すなわち,長方 形の中に特徴量の軌跡がすべて入っていなければならない。 Fig. 5 より, 位置ベース法である予測視覚フィードバック 制御において,提案手法による目標軌道を与えることで,カ メラ視野を外れていないことがわかる。一方,従来研究(10) である時不変の目標値の場合は,最終的な目標値に収束し ているもののカメラ視野を一度外れていることから,実際 の実験においては失敗することに注意されたい。

Fig. 6 に相対位置姿勢 $g_{co}(t)$ と最終的な目標位置姿勢 g_{cd_f} との間の偏差 e_r を示す。全ての偏差が定常状態にお いて 0 に収束していることが確認できる。一方, x 軸方向 及び y 軸方向の位置偏差, z 軸方向の姿勢偏差は単調減少 しているのに対して,その他の偏差は一度増加しているこ とがわかる。これはカメラ視野を維持するために,一旦カ メラが後退し,かつ観測対象を捉えやすい姿勢に回転して いることを表している。

最後に,予測視覚フィードバック制御の予測ホライズン の長さを変えたときのコストの違いに対して,以下の式で 計算し, その結果を Table 1 に示す。

積分区間はI = 1.5とした。評価関数のパラメータを適切 なものに選んだ安定化予測視覚フィードバック制御を用いた ときのコストが受動性に基づく制御則を適用させたときの コストに比べて小さいことから,コストの面において制御 性能が高いことが確認できる。さらに,ホライズンTの長 さを長くすると,より未来の状態を考慮しコストが最小に なるように入力が計算されるために、よりコストが減少さ れることが確認できる。また,ホライズンの長さをT=1よりも長く設定するとサンプリング時間内に制御入力を計 算することができなくなった。

5. 実験検証

本稿では3次元の動的視覚フィードバック制御則を提案 したが,検証実験では簡単のために,Fig.7に示す土佐電 子社のオムニホイールを有する全方向移動ロボットを用い

Fig. 7. Mobile robot and target object.

Fig. 8. Pose control error and estimation one.

た 2 次元平面上での実験をおこなった。移動ロボットには CCD カメラである KMT-1607N(30 fps) を搭載している。 カメラから画像を入力するボードとして, PCI バスカラー 画像入力ボードの PicPort-Color を使用する。また,画像 処理は画像処理用ソフトウェア HALCON を使用して,観 測対象上に取り付けた 4 点の中心点をそれぞれ算出する。 移動ロボットはディジタル制御装置として dSPACE 社の DS1104 を使用し制御する。サンプリング周期は 10 ms で ある。制御信号の送信には XBee を用いた。

実験検証では,実験装置の可動範囲に制約が生じるため, シミュレーション検証でおこなった光軸回転の検証ではな く光軸以外の軸回転の検証をおこなう。具体的には,初期 設定は $p_{co} = [0.2 \ 0 \ -1.3]^T \ m$, $\xi \theta_{co} = [0 \ \pi/12 \ 0]^T$ rad と,また最終的な目標位置姿勢は $p_{cd_f} = [0 \ 0.3 \ 0 \ -0.6]^T \ m$, $\xi \theta_{cd_f} = [0 \ 0 \ 0]^T$ rad とする。画像ピクセル値の最大 値及び最小値は $f_{xM} = 350$ pixel, $f_{xm} = -350$ pixel, $f_{yM} = 200$ pixel, $f_{ym} = -200$ pixel とした。評価関数 の重みや予測ホライズンの長さは以下のように設定した。 $q_{pc} = 0.008$, $q_{rc} = 0.005$, $q_{pe} = 0.2$, $q_{re} = 0.15$, R =diag{1.5, 1.5, 1.75, 0.8, 0.8, 0.8, 0.05, 0.05, 0.05, 0.06, 0.06, 0.06}, $\rho = 1$, T = 0.05 s。一方,目標軌道生成のためのゲ インは $k_{cd} = 140000$, $K_s = \text{diag}\{0.1, 0.05, 0.1, 0.05, 0.1, 0.05\}$, $\kappa = 2$ と設定した。

Figs. 8–10 に実験結果を示す。Fig. 8 は左に制御偏差, 右に推定偏差の実験結果を示している。上から3次元空間 での x, z 軸の位置偏差とy 軸周りの回転偏差を示す。シ ミュレーション検証に比べて収束時間が長いのは,モータ に対して電圧制限がかからないように重みや目標軌道生成 のためのゲインを設定しているためである。摩擦や画像ノ

Fig. 9. Estimated relative rigid body motion.

Fig. 10. Trajectory of image feature points (Top: with previous method ⁽¹⁰⁾, Bottom: with proposed one).

イズ等の影響により微小な偏差は残っているものの,両偏 差とも0に向かって収束していることがわかる。Fig.9 の実線は相対位置姿勢の推定値,破線は画像空間上のナビ ゲーション関数を用いて生成した目標位置姿勢を表してい る。モータへの電圧が制限されるために遅れが生じている ものの,目標位置姿勢に対して相対位置姿勢が追従してい るのがわかる。また,Fig.10には,画像特徴量 fcoのトラ ジェクトリーを示している。上が従来手法⁽¹⁰⁾,下が提案手 法の実験結果である。従来手法は3次元空間では偏差が減 るように動いているものの,画像空間に対しては何も考慮 していないために画像特徴点を外すようにカメラが動いて しまい,1.2sで許容画像最大値を超え実験は失敗してしま う。それに対して,提案手法では画像空間を考慮して目標 位置姿勢を設計しているために,画像特徴量がカメラ視野 内に留まる軌道でカメラが動いていることが確認できる。

さらに,予測ホライズンの長さを変えたときのコストの 違いを確認するために,(29)式を計算し,その結果を Ta-

Table 2.	Values of the integral cost with
	experimental results.

Control Scheme	$\cos t$
Passivity based Control	13.7056
Receding Horizon Control $(T = 0.01 [s])$	11.4265
Receding Horizon Control $(T = 0.05 [s])$	10.1662
Receding Horizon Control $(T = 0.5 [s])$	7.9265
Receding Horizon Control $(T = 1 [s])$	5.2540

ble 2 に示す。積分区間は I = 15 とした。安定化予測視 覚フィードバック制御を用いたときのコストの方が,受動 性に基づく制御則を適用させたときのコストに比べて小さ く,またホライズン T の長さを長くすると,よりコストが 減少することが実験結果からも確認できた。以上のことよ り,画像特徴点をカメラ視野に保持できる安定化予測視覚 フィードバック制御の有効性が示された。

おわりに

本論文では 3 次元の視覚フィードバックシステムに対 して,画像空間上のナビゲーション関数を用いた安定化モ デル予測制御則を提案した。はじめに,目標位置姿勢が時 変となる場合のシステムに対して,安定化予測視覚フィー ドバック制御を提案した。そして,制御則への目標位置姿 勢生成を画像空間上のナビゲーション関数を用いる手法で 設計した。ナビゲーション関数をリアプノフ関数候補とす ることで設計する目標位置姿勢が最終的な目標位置姿勢に 収束することを示している。提案手法は特徴点を常にカメ ラ視野内に維持しつつ最適理論に基づいた安定化予測視覚 フィードバック制御をシステムに適用できる手法となる。 最後にシミュレーションと検証実験により,光軸回転と光 軸以外の回転の両方において,提案した制御手法の有効性 を示した。

(平成 23 年 7 月 7 日受付,平成 23 年 12 月 26 日再受付)

文 献

- (1) F. Chaumette and S. A. Hutchinson: "Visual Servoing and Visual Tracking", In:B. Siciliano and O. Khatib (Eds), *Springer Handbook of Robotics*, Springer-Verlag, pp. 563– 583 (2008)
- (2) F. Chaumette: "Potential Problems of Stability and Convergence in Image-based and Position-based Visual Servoing", D. J. Kriegman, G. D. Hager and A. S. Morse (Eds.), The Confluence of Vision and Control, Lecture Notes in Control and Information Sciences 237, Springer-Verlag, pp. 66– 78 (1998)
- (3) T. Saitoh, N. Tada and R. Konishi: "Indoor Mobile Robot Navigation by Central Following based on Monocular Vision", *IEEJ Trans. Electronics, Information and Systems*, Vol. 129, No. 8, pp. 1576–1584 (2009) (in Japanese) 齊藤 剛史, 多田 直也,小西 亮介: "単眼カメラを用いた中央走 行型の屋内移動ロボット",電気学会論文誌 C, Vol. 129, No. 8, pp. 1576–1584 (2009) (in Japanese)
- (4) K. Katoh, K. Hirata, T. Mizuno and K. Yamada: "Development of "KUWAEBACHI" Robot via Visual Feedback Robust Control", Trans. the Society of Instrument and Control Engineers, Vol. 45, No. 10, pp. 530–537 (2010) (in Japanese) 加藤健一,平田健太郎,水野貴志,山田晃平: "視覚フィードバック

とロバスト制御による大道芸「くわえ撥」の実現",計測自動制御学 会論文集, Vol. 45, No. 10, pp. 530-537 (2010) (in Japanese)

- (5) J. Satake and J. Miura: "Person Following of a Mobile Robot using Stereo Vision", Journal of the Robotics Society of Japan, Vol. 28, No. 9, pp. 1091–1099 (2010) (in Japanese) 佐竹 純二,三浦 純: "ステレオビジョンを用いた移動ロボットの人 物追従制御",日本ロボット学会誌, Vol. 28, No. 9, pp. 1091–1099 (2010) (in Japanese)
- (6) D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert: "Constrained Model Predictive Control: Stability and Optimality", *Automatica*, Vol. 36, No. 6, pp. 789–814 (2000)
- (7) M. Sauvée, P. Poignet, E. Dombre and E. Courtial: "Image based Visual Servoing through Nonlinear Model Predictive Control", Proc. 45th IEEE Conference on Decision and Control, pp. 1776–1781 (2006)
- (8) M. Sauvée, P. Poignet and E. Dombre: "Ultrasound Imagebased Visual Servoing of a Surgical Instrument through Nonlinear Model Predictive Control", *The International Journal* of Robotics Research, Vol. 27, No. 1, pp. 25–40 (2008)
- (9) G. Allibert, E. Courtial and F. Chaumette: "Predictive Control for Constrained Image-based Visual Servoing", *IEEE Trans. on Robotics*, Vol. 26, No. 5, pp. 933–939 (2010)
- (10) T. Murao, H. Kawai and M. Fujita: "Predictive Visual Feedback Control with Eye-in/to-Hand Configuration via Stabilizing Receding Horizon Approach", Proc. of the 17th IFAC World Congress on Automatic Control, pp. 5341–5346 (2008)
- (11) T. Murao, H. Kawai and M. Fujita: "Stabilizing Predictive Visual Feedback Control for Fixed Camera Systems", *IEEJ Trans. Electronics, Information and Systems*, Vol. 129, No. 4, pp. 630–638 (2009) (in Japanese)
 村尾俊幸,河合宏之,藤田政之: "固定カメラシステムに対する安定化 予測ビジュアルフィードバック制御", 電気学会論文誌 C, Vol. 129, No. 4, pp. 630–638 (2009) (in Japanese)
- (12) N. J. Cowan, J. D. Weingarten and D. E. Koditschek: "Visual Servoing via Navigation Functions", *IEEE Trans. Robotics* and Automation, Vol. 18, No. 4, pp. 521–533 (2002)
- (13) N. J. Cowan and D. E. Chang: "Geometric Visual Servoing", *IEEE Trans. on Robotics*, Vol. 21, No. 6, pp. 1128–1138 (2005)
- (14) J. Chen, D. M. Dawson, W. E. Dixon and V. K. Chitrakaran: "Navigation Function-based Visual Servo Control", Automatica, Vol. 43, No. 7, pp. 1165–1177 (2007)
- (15) R. Murray, Z. Li and S. S. Sastry: A Mathematical Introduction to Robotic Manipulation, CRC Press (1994)
- (16) M. Fujita, H. Kawai and M. W. Spong: "Passivity-based Dynamic Visual Feedback Control for Three Dimensional Target Tracking:Stability and L₂-gain Performance Analysis", *IEEE Trans. Control Systems Technology*, Vol. 15, No. 1, pp. 40– 52 (2007)
- (17) F. Bullo and A. D. Lewis: Geometric Control of Mechanical Systems, Springer-Verlag (2004)
- (18) H. Kawai, T. Murao and M. Fujita: "Passivity-based Visual Motion Observer with Panoramic Camera for Pose Control", *Journal of Intelligent and Robotic Systems*, Vol. 64, No. 3–4, pp. 561–583 (2011)
- (19) T. Ohtsuka: "A Continuation/GMRES Method for Fast Computation of Nonlinear Receding Horizon Control", Automatica, Vol. 40, No. 4, pp. 563–574 (2004)

付 録

1. 画像空間上のナビゲーション関数

本節では,全ての画像特徴量をカメラ視野に維持するための画像空間上のナビゲーション関数 $\varphi(f_{cd})^{(12)(14)}$ について述べる。モデル空間上のナビゲーション関数を微分同相写像を用いて変換することにより,画像空間上のナビゲーション関数を構築する。

まずはじめに二つの補助的な関数である $\eta(f_{cd})$: $\mathcal{R}^8 \rightarrow [-1,1]^8 \geq s(\eta) : [-1,1]^8 \rightarrow \mathcal{R}^8$ をつぎのように定義する。

安定化予測視覚フィードバック制御に対するナビゲーション関数を用いた目標位置姿勢生成

$$\eta(f_{cd}) = \operatorname{diag} \left\{ \frac{2}{f_{x_M} - f_{x_m}}, \frac{2}{f_{y_M} - f_{y_m}}, \cdots, \frac{2}{f_{y_M} - f_{y_m}} \right\} f_{cd}$$
$$- \left[\frac{f_{x_M} + f_{x_m}}{f_{x_M} - f_{x_m}} \frac{f_{y_M} + f_{y_m}}{f_{y_M} - f_{y_m}} \cdots, \frac{f_{y_M} + f_{y_m}}{f_{y_M} - f_{y_m}} \right]^T (\mathfrak{f} 1)$$
$$s(\eta) = \left[\frac{\eta_1 - \eta_{f1}}{(1 - \eta_1^{2\kappa})^{\frac{1}{2\kappa}}} \cdots, \frac{\eta_8 - \eta_{f8}}{(1 - \eta_8^{2\kappa})^{\frac{1}{2\kappa}}} \right]^T \cdots \cdots \cdots (\mathfrak{f} 2)$$

ここで, $\eta(f_{cd}) = [\eta_1(f_{cd}) \eta_2(f_{cd}) \cdots \eta_8(f_{cd})]^T$ であり, $\kappa > 0 \in \mathcal{R}$ は $s(\eta)$ によって形作られるポテンシャル場を変 化させるためのパラメータである。また, f_{x_M} , f_{x_m} , f_{y_M} , f_{y_m} はx 軸,y 軸における画像ピクセル値の最大値及び最 小値をそれぞれ表す。(付 1)式の関数に対して,目標画像 特徴量ベクトルの最終値 f_{cd_f} に関しては $\eta_f := \eta(f_{cd_f})$ と 表すことにする。補助関数 $\eta(f_{cd})$ は現在の目標画像特徴 量を画像ピクセル値の最大値及び最小値に対して正規化す るための関数であり,また関数 $s(\eta)$ は現在の目標画像特 徴量とその最終値との偏差を定義した関数となっている。 $\tilde{\varphi}(\eta) \in \mathcal{R}^8 \rightarrow [0,1]$ で表されるモデル空間上のナビゲー

さらに (付 3) 式内の関数 $\bar{\varphi}(\eta) \in \mathcal{R}^8 \to \mathcal{R}$ はつぎのように 定義される。

ここで, $K_s \in \mathcal{R}^{8 \times 8}$ は正定で対角なゲイン行列である。(付3)式の関数がナビゲーション関数となることは文献 (12)の Proposition 3 を参考にされたい。

 $\varphi(f_{cd}) \in D \rightarrow \mathcal{R}$ で表される画像空間上のナビゲーション関数はつぎのように表すことができる。

ここで, \circ は合成演算子を表している。したがって, 勾配 ベクトル $\nabla \varphi(f_{cd})$ はつぎのように計算できる。

$$\nabla \varphi(f_{cd}) := \left(\frac{\partial \varphi}{\partial f_{cd}}\right)^T$$

$$= \frac{1}{(1+\bar{\varphi})^2} \operatorname{diag} \left\{ \frac{2}{f_{x_M} - f_{x_m}}, \frac{2}{f_{y_M} - f_{y_m}}, \cdots, \frac{2}{f_{y_M} - f_{y_m}} \right\}$$

$$\times \operatorname{diag} \left\{ \frac{1 - \eta_1^{2\kappa - 1} \eta_{f1}}{(1 - \eta_1^{2\kappa})^{\frac{2\kappa + 1}{2\kappa}}}, \cdots, \frac{1 - \eta_8^{2\kappa - 1} \eta_{f8}}{(1 - \eta_8^{2\kappa})^{\frac{2\kappa + 1}{2\kappa}}} \right\} K_s s \cdots (f \neg 6)$$

 $({\rm ff}\,1)\,{\sim}\,({\rm ff}\,6)$ 式より , $\nabla\varphi(f_{cd})\to 0$ のとき $f_{cd}(t)\to f_{cd_f}$ になることは明らかである。

河 合 宏 之 (非会員) 2001 年金沢大学大学院自然科学研究 科電子情報システム専攻博士前期課程修了,2004 年金沢大学大学院自然科学研究科機能開発科学専 攻博士後期課程修了,同年法政大学情報技術(IT) 研究センターポストドクター。2005 年金沢工業大 学講師。2010 年同准教授。2008 年 IEEE TCST Outstanding Paper Award。視覚フィードバッ ク制御とその応用に関する研究に従事。博士(工

学)。計測自動制御学会,システム制御情報学会,IEEEの会員。

2010 年 IEEE MSC General Chair, IEEE TAC, IEEE TCST, Automatica, Asian J. Control の Associate Editor, SICE JCMSI の Editor。2008 年 IEEE TCST Outstanding Paper Award, 2000 年 ISCIE 論文賞, 2009, 1997 年 SICE 論文賞, 2010 年 SICE 教育 貢献賞。ロバスト制御とその応用,ビジュアルフィードバックによる 協調制御の研究に従事。工学博士。IEEE CSS などの会員。