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Abstract—This paper investigates passivity-based pose con-
trol via an obstacle avoidance navigation function for three-
dimensional (3-D) eye-in-hand visual feedback systems. Firstly,
visual motion observer-based pose control for3-D eye-in-hand
visual feedback systems is presented. Next, a path planner to
be appropriate for the visual motion error system is designed
through an obstacle avoidance navigation function to keep
collision-free during servoing. Finally, the effectiveness of the
proposed method is verified through computer simulations.

I. I NTRODUCTION

Visual feedback control is now a very flexible and useful
method in robot control [1]. Recently, Allibertet al. [2]
reported comparison results between two image prediction
models for an image-based visual servoing scheme based on
nonlinear model predictive control. Becerraet al. [3] presented
a robust sliding mode control law that exploits epipolar
geometries among three views. Zhanget al. [4] proposed a
new 2-1/2-D visual servoing method for nonholonomic mobile
robots based on a novel motion-estimation technique, which
does not need homography/fundamental matrix estimation or
decomposition. The authors have been proposed passivity-
based visual feedback control for three-dimensional (3-D)
target tracking in a series of papers [5]–[7].

Obstacle avoidance coupled with accurate path following
control which is to move a vehicle towards a target location
free of collisions with the obstacles has attracted much at-
tention of a great amount of robotics researchers [8]. Huang
et al. [9] proposed a local navigation method with a single
camera for obstacle avoidance using headings to obstacles and
their angular widths. Cherubini and Chaumette [10] presented
appearance-based visual navigation with obstacle avoidance
for real outdoor environments. This appearance-based visual
navigation, which is one of the few methods for obstacle
avoidance through the camera model, avoids new obstacles by
using a range scanner. Although good vision-based navigation
approaches for the obstacle avoidance problems are presented
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Fig. 1. Eye-in-hand visual feedback system with obstacles.

in [9] and [10], they are restricted to a ground vehicle.
On the other hand, in robot control, one of the representative

works for obstacle avoidance problems is a navigation function
that is globally convergent potential function proposed by
Rimon and Koditschek [11]. The feature of this efficient ap-
proach is that automatically merge path finding and trajectory
generation in a closed-loop fashion. Some navigation function
approaches for visual feedback systems are reported in [12]–
[14]. Cowanet al. [12] proposed a visual feedback controller
to bring a robot to rest at a desired configuration for an impor-
tant problem that are all feature points remain within a camera
field of view by using navigation functions. Chenet al. [13]
and the authors [14] developed an off-line path planner based
on an image space navigation function with an adaptive 2 1/2-
D visual servoing controller and a stabilizing receding horizon
one, respectively. However, all these approaches [12]–[14] take
advantage of navigation functions to solve the camera field of
view problems but not to deal with the obstacle avoidance
problems.

In this paper, passivity-based pose control via a navigation
function for obstacle avoidance is applied to 3-D visual feed-
back systems with an eye-in-hand configuration as shown in



Fig. 1. Firstly, passivity-based pose control for an eye-in-hand
visual motion error system is proposed. Next, a path planner to
be appropriate for the visual motion error system is designed
through an obstacle avoidance navigation function in order
to move the camera towards a desired pose and away from
obstacles without additional sensors such as a range scanner.
Convergence analysis of the proposed path planner is provided.
Finally, we present simulation results that demonstrate the
effectiveness of the proposed control scheme.

II. V ISUAL MOTION OBSERVER-BASED POSECONTROL

This section mainly reviews our previous work [5] via
passivity-based visual feedback control with an eye-in-hand
configuration.

A. Vision Camera Model

Visual feedback systems with an eye-in-hand configuration
use three andn coordinate frames which consist of a world
frameΣw, a camera frameΣc, a target object frameΣo and
n obstacle framesΣb1 , · · · ,Σbn as depicted in Fig. 1. Let
pco ∈ R3 and eξ̂θco ∈ SO(3) be a position vector and a
rotation matrix from the camera frameΣc to the object frame
Σo. Then, a relative pose fromΣc to Σo can be represented
by gco = (pco, e

ξ̂θco) ∈ SE(3)1.
The objective of position-based visual feedback control is,

in general, to bring the actual relative posegco to a reference
onegcd. Firstly, we consider the relative posegco in order to
achieve the control objective. The relative pose fromΣc to
Σo can be led by using the composition rule for rigid body
transformations as follows:

gco = g−1
wc gwo. (1)

The relative pose involves the velocity of each rigid body.
To this aid, let us consider the velocity of a rigid body as
described in [15]. We define the body velocity of the camera
relative to the world frameΣw asV b

wc = [(vbwc)
T (ωb

wc)
T ]T ,

wherevbwc and ωb
wc represent the velocity of the origin and

the angular velocity fromΣw to Σc, respectively [15].
Differentiating Eq. (1) with respect to time, the body

velocity of the relative posegco can be written as follows
(See [5]):

V b
co = −Ad(g−1

co )V
b
wc + V b

wo, (2)

whereV b
wo is the body velocity of the target object relative to

Σw andAd(gco) is the adjoint transformation associated with
gco [15].

The relative posegco = (pco, e
ξ̂θco) cannot be immediately

obtained in the visual feedback system, because the target
object velocityV b

wo is unknown and furthermore cannot be
measured directly. To control the relative pose using visual
information provided by computer vision system, we use the
pinhole camera model with a perspective projection. Here, we
considerm(≥ 4) feature points on the rigid target object in
this paper. Letλ be a focal length,poi ∈ R3 and pci ∈ R3

1The notation of the homogeneous transform is denoted in Appendix.

be the position vectors of the target object’si-th feature point
relative toΣo and Σc, respectively. Using a transformation
of the coordinates, we havepci = gcopoi, wherepci and poi
should be regarded, with a slight abuse of notation, as[pTci 1]

T

and [pToi 1]T via the well-known homogeneous coordinate
representation in robotics, respectively (see, e.g., [15]).

The perspective projection of thei-th feature point onto
the image plane gives us the image plane coordinatefi :=
[fxi fyi]

T ∈ R2 as

fi =
λ

zci

[
xci

yci

]
, (3)

wherepci = [xci yci zci]
T . It is straightforward to extend this

model tom image points by simply stacking the vectors of the
image plane coordinate, i.e.,f(gco) := [fT

1 · · · fT
m]T ∈ R2m

and pc := [pTc1 · · · pTcm]T ∈ R3m. Hereafter,fab means
f(gab) for simplicity. We assume that multiple point features
on a known object are given and observed. Under this assump-
tion, the image feature vectorfco depends only on the relative
posegco.

B. Estimation Error System

The visual feedback control task requires information of the
relative posegco. Since the measurable information is only the
image featurefco in the visual feedback system, we consider a
nonlinear observer (we call a visual motion observer) in order
to estimate the relative posegco from the image featurefco.

Firstly, using Eq. (2), we choose estimatesḡco and V̄ b
co of

the relative pose and velocity, respectively as

V̄ b
co = −Ad(ḡ−1

co )V
b
wc + ue. (4)

The new inputue is to be determined in order to drive the
estimated values̄gco and V̄ b

co to their actual values.
In order to establish the estimation error system, we define

the estimation error between the estimated valueḡco and the
actual relative posegco as

gee = ḡ−1
co gco. (5)

We next define the error vector of the rotation matrixeξ̂θei as
rei := sk(eξ̂θei)∨ wheresk(eξ̂θei) denotes12 (e

ξ̂θei − e−ξ̂θei).
Using this notation, the vector of the estimation error is given
by ee := [pTee rTee]

T .
Suppose the attitude estimation errorθee is small enough

that we can leteξ̂θee ≃ I +sk(eξ̂θee). Therefore, using a first-
order Taylor expansion approximation, the estimation error
vector ee can be obtained from image informationfco and
the estimated value of the relative poseḡco as follows:

ee = J†
e (ḡco)(fco − f̄co), (6)

wheref̄co is the estimated value of image feature andJe(ḡco)
is an image Jacobian-like matrix [5]. In the same way as Eq.
(2), the estimation error system can be represented by

V b
ee = −Ad(g−1

ee )ue + V b
wo. (7)



C. Pose Control Error System

Let us consider the dual of the estimation error system,
which we call the pose control error system in order to achieve
the control objective. Firstly, we define the pose control error
as follows:

gec = g−1
cd gco, (8)

which represents the error between the relative posegco and
the reference onegcd. It should be remarked thatgco can
be calculated by using the estimated relative poseḡco and
the estimation error vectoree = [pTee rTee]

T equivalently as
follows:

gco = ḡcogee (9)

ξθee =
sin−1 ∥ree∥

∥ree∥
ree, (10)

although gco cannot be measured directly. Similar to the
estimation error vector, the vector of the pose control error
is defined asec := [pTec rTec]

T .
Differentiating Eq. (8) with respect to time, the pose control

error system can be represented as

V b
ec = −Ad(g−1

ec )

(
Ad(g−1

cd )V
b
wc + V b

cd

)
+ V b

wo, (11)

whereV b
cd is the body velocity of the reference of the relative

posegcd.

D. Visual Motion Observer-based Pose Control

Combining the estimation error system (7) and the pose
control one (11), we construct the visual motion observer-
based pose control error system (we call the visual motion
error system) as follows:[

V b
ec

V b
ee

]
=

[ −Ad(g−1
ec ) 0

0 −Ad(g−1
ee )

]
u+

[
I
I

]
V b
wo, (12)

where

u := [uT
c uT

e ]
T , uc := Ad(g−1

cd )V
b
wc + V b

cd. (13)

Let us define the error vector of the visual motion error system
as x := [eTc eTe ]

T , which consists of the pose control error
vectorec and the estimation error vectoree. It should be noted
that if the vectors of the pose control error and the estimation
one are equal to zero, then the actual relative posegco tends
to the reference onegcd whenx → 0.

It can be proved that the visual motion error system (12)
is passive from the inputu to the output−x by using the
following positive definite function:

V = E(gec) + E(gee), (14)

whereE(gei) :=
1
2∥pei∥

2 +ϕ(eξ̂θei) andϕ(eξ̂θei) := 1
2 tr(I −

eξ̂θei) is an error function of the rotation matrix.
Based on the passivity property of the visual motion error

system, we consider the following control law.

u = −K(−x), K := diag{Kc,Ke}, (15)

where Kc := diag{kc1, · · · , kc6} and Ke :=
diag{ke1, · · · , ke6} are the positive gain matrices ofx,
y and z axes of the translation and the rotation for the pose
control error and the estimation one, respectively.

Theorem 1 ([5]): If V b
wo = 0, then the equilibrium point

x = 0 for the closed-loop system (12) and (15) is asymptotic
stable.
Theorem 1 shows Lyapunov stability for the closed-loop
system. If the camera velocityV b

wc is decided directly, the
control objective is achieved by using the proposed control
law (15).

III. O BSTACLE AVOIDANCE NAVIGATION

FUNCTION-BASED PATH PLANNING FOR EYE-IN-HAND

SYSTEMS

Vision-based navigation with obstacle avoidance should
offer great perspectives in many applications, such as surveil-
lance, patrolling, search and rescue or high risk missions. In
this section, as a first step for a vision-based navigation, we
design a path planer through an obstacle avoidance navigation
function for 3-D eye-in-hand visual feedback systems. The
control objective in this paper is stated as follows:

Control Objective:The camera follows the target object,
i.e., the relative posegco(t) is coincided with the time-varying
desired onegcd(t) which is generated to avoid unexpected
obstacles, and which converges the final desired onegcdf

.
From the proposed visual feedback control law, the input to

the camera is designed as follows:

V b
wc = Ad(gcd)

(
uc − V b

cd

)
. (16)

Hence, the camera input is only needed the body velocity
V b
cd = [(vbcd)

T (ωb
cd)

T ]T of the reference of the relative pose
gcd

2.

A. Rotation Error for Path Planning

In rotation control, we consider only convergence to the
final desired rotation. We define the rotation error between
the time-varying relative desired rotationeξ̂θcd and the final
oneeξ̂θcdf as follows:

eξ̂θed = e−ξ̂θcdf eξ̂θcd . (17)

The vector form is defined asred := sk(eξ̂θed). Differentiating
Eq. (17) with respect to time, the rotation error system for path
planning can be written as

ωb
ed = ωb

cd. (18)

B. Visual Motion Observer for Path Planning

Obstacle avoidance navigation function-based path planning
needs the relative position of the obstacle from the camera
frame pcbi . In this section, we design the visual motion
observer in order to estimate the relative positionpcbi using
the image featurefcbi := f(gcbi). Now, we assume that the
multiple points on the obstacles can be observed and the

2The relative posegcd can be obtained solvinġgcd = gcdV̂
b
cd.



position of it pbii is known. The body velocity of the relative
posegcbi can be written as follows:

V b
cbi = −Ad(g−1

cbi
)V

b
wc + V b

wbi , (19)

where V b
wbi

is the obstacle body velocity. Using the body
velocity V b

cbi
(19), we establish a following estimate model

for the obstacles:

V̄ b
cbi = −Ad(ḡ−1

cbi
)V

b
wc + ubi , (20)

whereḡcbi and V̄ b
cbi

are the estimated values ofgcbi andV b
cbi

,
respectively. We define the estimation errorgebi between the
actual relative posegcbi and the estimated onēgcbi as follows:

gebi = ḡ−1
cbi

gcbi . (21)

The vector of the estimation errorebi = [pTebi rTebi ]
T can be

obtained by exploiting the image featurefcbi and the estimate
valuesḡcbi and f̄cbi as

ebi = J†
e (ḡcbi)(fcbi − f̄cbi). (22)

Hence, the relative positionpcbi can be calculated as follows:

pcbi = e
ˆ̄ξθ̄cbipebi + p̄cbi (23)

throughgcbi = ḡcbigebi . The estimation error system for the
obstacles can be obtained as

V b
ebi = −Ad(g−1

ebi
)ubi + Vwbi . (24)

C. Obstacle Avoidance Navigation Function

In this subsection, we develop the obstacle avoidance navi-
gation functionφ(pcd) [11], [16]. In this paper, we assume that
the workspace and the obstacles are spherical. This assumption
does not constrain the generality of this work since it has
been proven that navigation properties are invariant under
diffeomorphisms in [16].

Firstly, we define a spaceD where the camera can move
avoiding obstacles as follows:

D = F −
M∪
i=1

Bi, (25)

where F := {pcd : ∥pcd∥2 ≤ ρ20} is the camera movable
space which represents a Euclidean 3-dimensional disk with
the radiusρ0 > 0, and Bi := {pcd : ∥pcbi(pcd)∥2 <
ρ2i }, i = 1 . . .M denotes aM -th obstacle space inF with
the radiusρi > 0. We impose the additional constraint that
all obstacles closures are contained in the interior of the
workspace; i.e.∥pcbi∥+ ρi < ρ0, 1 ≤ i ≤ M , and that none
of them intersect; i.e.∥pcbi − pcbj∥ > ρi + ρj , 1 ≤ i, j ≤ M .
If pcd ∈ D, the camera keeps collision-free.

The navigation functions used in this paper are defined as
follows:

Definition 1 ([11],[16]): A smooth Morse functionφ(pcd)
: D → [0, 1] is a navigation function if it is

1) a unique minimum exists atpcdf
;

2) uniformly maximal on the boundary ofD.

A smooth vector field on any sphere world with a unique
attractor, must have at least as many saddles as obstacles. The
property of a Morse function whose Hessian at all critical
points is non-degenerate establishes that the initial conditions
that bring the system to saddle points are sets of measure zero.
In view of this property, all initial conditions away from sets
of measure zero are brought to the unique minimum [16].

In order to design the obstacle avoidance navigation func-
tion, we utilize the following function which represents the
error between the desired relative positionpcd and the final
onepcdf

:

s(pcd) = ∥pcd − pcdf
∥2κ, (26)

whereκ > 0 ∈ R is an additional parameter to change the
potential field. Next, let define the obstacle function which
includes the functionη0 for keeping in the spaceF as

η(pcd) =
M∏
i=0

ηi(pcd) (27)

ηi(pcd) =

{
ρ20 − ∥pcd∥2 for i = 0
∥pcbi∥2 − ρ2i . for i = 1 · · ·M

Then, the model space navigation functionφ̃(x) ∈ R2m →
[0, 1] and aκ-th root function are defined as

φ̃(x) =
x

µ+ x
(28)

and

ρ(x) = x
1
κ , (29)

respectively, whereµ > 0 ∈ R is a parameter. The function
(29) is important in order to changepcdf

to a non-degenerate
critical point. From Eqs. (26)–(29), the obstacle avoidance
navigation function denoted byφ(pcd) ∈ D → R, can be
developed as follows:

φ(pcd) = ρ ◦ φ̃ ◦ s

η
(pcd) =

(
s(pcd)

µη(pcd) + s(pcd)

) 1
κ

(30)

where ◦ denotes the composition operator. Using a similar
way in [16], it can be verified that the function (30) is the
navigation function if the parameterκ is selected adequately.

D. Path Planning of Desired Body Velocity

We design the desired body velocityV b
cd and the input for

the estimationubi as follows:

V b
cd =

[
−e−ξ̂θcdKdp∇φ(pcd)

−Kdre
−ξ̂θedred

]
(31)

ubi = Kbebi , (32)

where Kdp := diag{kdp1, kdp2, kdp3}, Kdr :=
diag{kdr1, kdr2, kdr3} and Kb := diag{kb1, · · · , kb6}
are the positive gain matrices for the translation and the
rotation of the desired body velocity and for the estimation

input, respectively.∇φ(pcd) :=
(

∂φ(pcd)
∂pcd

)T

which denotes



the gradient vector ofφ(pcd) can be calculated as Eq. (33) at
the bottom of this page.

We state the main result of this paper concerning the
convergence of the path planner.

Theorem 2:Suppose thatV b
wo = 0 andV b

wbi
= 0, and the

initial desired relative positionpcd(0) satisfiespcd(0) ∈ D.
Then, the desired relative positionpcd(t) ensures thatpcd(t) ∈
D and gcd(t) has the asymptotically stable equilibrium point
gcdf

.
Proof: Consider the following positive definite function:

Vn = φ(pcd) + ϕ(eξ̂θed) +

M∑
i=1

E(gebi) (34)

Evaluating the time derivative ofVn along the trajectories of
Eqs. (18), (24), (31), (32) gives us

V̇n = (∇φ)T ṗcd + rTede
ξ̂θedωb

ed +
M∑
i=1

eTbiAd(eξ̂θebi )
V b
ebi

= (∇φ)T eξ̂θcdvbcd + rTede
ξ̂θedωb

cd

+

M∑
i=1

eTbiAd
(e

ξ̂θebi )
(−Ad−1

(gebi )
ubi)

= −(∇φ)T eξ̂θcde−ξ̂θcdKdp∇φ− rTede
ξ̂θedKdre

−ξ̂θedred

+
M∑
i=1

(
−eTbiKbebi

)
= −(∇φ)TKdp∇φ− (e−ξ̂θedred)

TKdre
−ξ̂θedred

−
M∑
i=1

eTbiKbebi . (35)

It is clear from Eq. (35) thatVn is a non-increasing function
in the sense that

Vn ≤ Vn(0). (36)

From Eqs. (34) and (36), the conditionpcd(t) ∈ D, ∀t > 0
is satisfied for any initial conditionpcd(0) ∈ D. Since the
estimation error vectorebi → 0, the positionpcbi which
is utilized in the obstacle functions converges actual value.
Thanks to the property of navigation functions [16], it can
be shownpcd(t) → pcdf

through ∇φ(pcd) → 0. On the

other hand, the rotationeξ̂θcd(t) → eξ̂θedf can be verified
because ofe−ξ̂θedred → 0. Therefore, it can be concluded
that gcd(t) → gcdf

.
Theorem 2 guarantees the convergence of the time-varying

desired posegcd(t) to the final onegcdf
. The path planner

can be designed to keep collision-free based on the obstacle
avoidance navigation function. The block diagram of the
visual motion observer-based eye-in-hand pose control with
the obstacle avoidance navigation function-based path planner
is shown in Fig. 2.

gcd

Vcd
b

Vwc
b

Vwo
b

Visual Motion

Pose Controller

Observer-based

Obstacle

Avoidance

Navigation

Function-based

Path Planner

gcdf

Vision

Camera

fcb

fco

i

Fig. 2. Block diagram of visual motion observer-based eye-in-hand pose
control with obstacle avoidance navigation function-based path planner.

Our proposed approach, which deals with the estimation
problem from the visual features explicitly, can be applied to
3-D eye-in-hand visual feedback systems without restriction
to the ground vehicle. Thus, the proposed method which is
connected the visual motion observer-based pose control and
the obstacle avoidance navigation function-based path planner
without additional sensors allows us to extend technological
application area. The main contribution of this paper is to
provide that the path planner which can achieve obstacle
avoidance during the servoing is designed for the eye-in-hand
visual feedback control.

In our passivity-based visual feedback control approach, the
image Jacobian-like matrixJ(·) of the pinhole camera model
is exactly the same form as that of the panoramic camera
model [17]. Therefore, the proposed approach can be applied
to 3-D eye-in-hand visual feedback systems with a panoramic
camera using the image Jacobian-like matrixJ(·) in [17].

IV. V ERIFICATION

In this section, we present simulation results for the visual
feedback control with the path planner via the obstacle avoid-
ance navigation function, compared with the constant desired
relative pose proposed in [5]. The control objective is that the
camera tracks the static target object to avoid two obstacles.
In other words, it is bring the actual relative posegco(t) to a
given reference onegcdf

using a time-varying reference one
gcd(t), and it can be achieved to make both the estimation and
the pose control errors zero.

The simulation is carried out with the initial condition
pco = [−1.25 4.994 0.5]T m, ξθco = [0 0 − π/12]T rad.
The final desired relative pose ispcdf

= [0 1.5 0]T m,
ξθcdf

= [0 0 0]T rad. The other conditions are set aspcb1 =
[−0.224 1.095 0]T m, ξθcb1 = [0 0 − π/12]T rad, ρ1 = 0.5
m, pcb2 = [−1.414 2.45 0.75]T m, ξθcb2 = [0 0 − π/12]T

rad,ρ2 = 0.5 m.
The simulation results are presented in Figs. 3 and 4. Fig. 3

shows the actual pose control errorer, which is the error
vector between the current relative posegco(t) and the final
desired onegcdf

, instead of the time-varying desired one
gcd(t). The asymptotic stability can be confirmed by steady
state performance in Fig. 3.

∇φ(pcd) =
2µ

κ(µη + s)
1+κ
κ

κη(pcd − pcdf
) + ∥pcd − pcdf

∥2
 M∏

i=1

ηipcd −
M∑
j=1

M∏
i=0,i̸=j

ηipcbj

 (33)
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Fig. 4 presents the trajectory of the position of the camera
pwc. In Fig. 4, the spheres and the rectangle show the static
obstacles and target object, respectively. The solid (red) lines
denote the trajectory applying the proposed passivity-based
pose control with the path planner, and the dashed (blue) lines
denote those with the constant desired value. The trajectory
should be designed that the camera moves toward the rectangle
avoiding the spheres. From Fig. 4, it is concluded that the
proposed method can make the camera avoid all obstacles. Al-
though the convergence to the desired values is also achieved
in the case of the previous method [5] in the simulation, it
corresponds to fail in the actual experiment as the camera hits

the obstacles.

V. CONCLUSIONS

This paper proposes passivity-based3-D eye-in-hand visual
feedback control via an obstacle avoidance navigation func-
tion. The main contribution of this paper is to show that the
path planner which can avoid obstacles during servoing is
designed for3-D eye-in-hand visual feedback systems. Simu-
lation results are presented to verify the control performance
with obstacle avoidance of the proposed control scheme. Al-
though only simulation results are shown in this submitted ver-
sion, experimental movies using a Parrot AR.Drone which is a
wifi quadrotor aerial vehicle with two cameras are available at
http://wwwr.kanazawa-it.ac.jp/kawai/resear
ch/ARDrone/ARDronemovies.html .
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APPENDIX

In this paper, we use the notationeξ̂θab ∈ R3×3 to represent
the change of the principle axes of a frameΣb relative to
a frame Σa. ξab ∈ R3 specifies the direction of rotation
and θab ∈ R is the angle of rotation. For simplicity we use
ξ̂θab to denoteξ̂abθab. The notation ‘∧’ (wedge) is the skew-
symmetric operator such that̂ξθab = ξab × θab for the vector
cross-product× and any vectorθ ∈ R3. The notation ‘∨’
(vee) denotes the inverse operator to ‘∧’, i.e., so(3) → R3.
Recall that a skew-symmetric matrix corresponds to an axis
of rotation (via the mappinga 7→ â). We use the4× 4 matrix

gab =

[
eξ̂θab pab
0 1

]
(37)

as the homogeneous representation ofgab = (pab, e
ξ̂θab) ∈

SE(3) describing the configuration of a frameΣb relative to
a frameΣa. The adjoint transformation associated withgab is
denoted byAd(gab) [15].


