
Passivity-based	Visual	Force	Feedback	Control	for	Eye-to-Hand	Systems 329

Passivity-based	Visual	Force	Feedback	Control	for	Eye-to-Hand	Systems

Hiroyuki	Kawai,	Toshiyuki	Murao	and	Masayuki	Fujita

x 
 

Passivity-based Visual Force Feedback 
 Control for Eye-to-Hand Systems 

 
Hiroyuki Kawai 1,  Toshiyuki Murao 2 and Masayuki Fujita 3 

1 Kanazawa Institute of Technology, Ishikawa 
 Japan 

2 Advanced Institute of Industrial Technology, Tokyo 
 Japan 

3 Tokyo Institute of Technology, Tokyo 
 Japan 

 
1. Introduction     
 

Robotics and intelligent machines need sensory information to behave autonomously in 
dynamical environments. Visual information is particularly suited to recognize unknown 
surroundings. Vision based control of robotic systems involves the fusion of robot 
kinematics, dynamics, and computer vision to control the motion of the robot in an efficient 
manner. The combination of mechanical control with visual information, so-called visual 
feedback control or visual servoing, is important when we consider a mechanical system 
working under dynamical environments (Chaumette & Hutchinson, 2008). 
For the theoretically problem of three dimensional(3D) visual servo control based on the 
robot control theory, (Kelly et al., 2000) considered a simple image-based controller under 
the assumption that the objects' depths are known. (Chen et al., 2007) addressed the field-of-
view problem for 3D dynamic visual feedback system using an image-space navigation 
function. In our previous works, we discussed the dynamic visual feedback control for 3D 
target tracking based on passivity (Fujita et al., 2007) (Murao et al., 2008). On the other hand, 
applications of visual feedback system are also increasing in many fields. For example, 
recent applications of visual feedback system include the autonomous injection of biological 
cells (Yu & Nelson, 2001), laparoscopic surgery (Omote et al., 1999) and others. Although 
visual information is necessary in order to recognize environments, only visual information 
is not enough to complete tasks in these applications. For example, not only visual 
information but also force information are needed to inject DNA to biological cells. Hence, 
integrating visual feedback control with force control is important for the modern robot. 
(Xiao et al., 2000) developed sensor fusion scheme for controlling an end-effector to follow 
an unknown trajectory on a contact surface. (Baeten et al., 2003) addressed a hybrid control 
structure for the eye-in-hand vision and force control. Although many practical methods are 
reported with experimental results, rigorous results have hardly been obtained in terms of 
the nonlinear control aspects. For this problem, (Dean-Leon et al., 2006) has combined 
image-based visual feedback control with force control and discussed the stability of the 
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nonlinear system. The authors have proposed passivity based visual force feedback control 
law for force control with target tracking (Kawai et al., 2007). Although these control laws 
guarantee Lyapunov stability and are effective for the visual force feedback system, they are 
restricted to planar manipulators. 
This chapter deals with 3D visual force feedback control for eye-to-hand systems as depicted 
in Fig. 1. In our proposed method, we can control not only the position but also the 
orientation of the robot hand with a contact force in the visual force feedback system. The 
main contribution of this chapter is to show that the 3D visual force feedback system has the 
passivity which allows us to prove stability in the sense of Lyapunov. Both the passivity of 
the manipulator dynamics and the passivity of the visual feedback system are preserved in 
the 3D visual force feedback system. Finally simulation results are shown to verify the 
stability of the proposed method.  
 

 
Fig. 1. Visual force feedback system with an eye-to-hand configuration 

 
2. Visual Feedback System 
 

This section mainly reviews our previous works (Fujita et al., 2007) (Murao et al., 2008) via 
the passivity based visual feedback control. Throughout this chapter, we use the notation 

33ˆ abe   to represent the change of the principle axes of a frame b  relative to a frame 

a . 3ab  specifies the direction of rotation and ab  is the angle of rotation. For 

simplicity we use ab̂  to denote abab̂ . The notation '  ' (wedge) is the skew-symmetric 

operator such that  ˆ  for the vector cross-product   and any vector 3 . The 

notation '  ' (vee) denotes the inverse operator to '  ', i.e., 3)3( so . Recall that a skew-
symmetric matrix corresponds to an axis of rotation (via the mapping aa ˆ ). We use the 
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as the homogeneous representation of )3(),(
ˆ

SEepg ababab    describing the configuration 
of a frame b  relative to a frame a . The adjoint transformation associated with abg  is 
denoted by )(Ad

abg  (Murray et al., 1994).  

 
2.1 Basic Representation for Visual Feedback System 
Visual feedback systems with an eye-to-hand configuration typically use four coordinate 
frames which consist of a world frame w , a target object frame o , a camera frame c  

and a hand (end-effector) frame h  as in Fig. 1. Then, )3(),(
ˆ

SEepg whwhwh   , 

)3(),(
ˆ

SEepg wcwcwc    and )3(),(
ˆ

SEepg wowowo    denote the rigid body motion from 

w  to h , from w  to c  and from w  to o , respectively. Similarly, the relative rigid 
body motion from c  to h , from c  to o  and from h  to o  can be represented by 

)3(),(
ˆ

SEepg chchch   , )3(),(
ˆ

SEepg cococo    and )3(),(
ˆ

SEepg hohoho   , respectively, 
as shown in Fig. 1. The objective of the visual feedback control is to bring the actual relative 

rigid body motion hog  to a given reference ),(
ˆ
depg dd

  which is constant in this chapter. 
In other words, our goal is to determine the motion of hand by using the visual information.  
The relative rigid body motion from c  to o  can be led by using the composition rule for 
rigid body transformations ((Murray et al., 1994), Chap. 2, pp. 37, eq. (2.24)) as follows:  

 

wowcco ggg 1     ref 1(2) 
 
The relative rigid body motion involves the velocity of each rigid body. To this aid, let us 
consider the velocity of a rigid body as described in (Murray et al., 1994). We define the 

body velocity of the camera relative to the world frame w  as  TT
wc

T
wc

b
wc vV  , where wcv  

and wc  represent the velocity of the origin and the angular velocity from w  to c , 
respectively ((Murray et al., 1994), Chap. 2, eq. (2.55)).  
Differentiating (2) with respect to time, the body velocity of the relative rigid body motion 
cog  can be written as follows (See (Fujita et al., 2007)):  

 
b
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b
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  )( 1Ad     ref 2(3) 

 
where b

woV  is the body velocity of the target object relative to w . In the case of the eye-to-

hand configuration, i.e. 0b
wcV , the model of the relative rigid body motion cog  can be 

rewritten as  
 

b
wo

b
co VV      ref 3(4) 
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Roughly speaking, if both the camera and the target object move, then the relative rigid 
body motion cog  will be derived from the difference between the camera velocity b

wcV  and 

the target object velocity b
woV . Hence, the model of the relative rigid body motion from c  

to o  equals the target object velocity b
woV . 

 
2.2 Estimation Error System 
The relative rigid body motion cog  can not be immediately obtained in the visual feedback 
system, because the target object velocity is unknown and furthermore can not be measured  
directly. Hence, we consider the estimation problem of the relative rigid body motion cog . 
The visual feedback control task requires information of the relative rigid body motion cog . 
Since the measurable information is only the image information )( cogf  in the visual 
feedback system, we consider a visual motion observer in order to estimate the relative rigid 
body motion cog  from the image information )( cogf . 

Firstly, using the basic representation (4), we choose estimates cog  and b
coV  of the relative 

rigid body motion and velocity, respectively as 
 

.e
b
co uV       ref 4(5) 

 
The new input eu  is to be determined in order to drive the estimated values cog  and b

coV  to 
their actual values. 
In order to establish the estimation error system, we define the estimation error between the 
estimated value cog  and the actual relative rigid body motion cog  as 

 
.1

cocoee ggg      ref 5(6) 
 

Using the notation )( ̂eeR , the vector of the estimation error is defined as 

.)]([:
ˆ TT

R
T
eee eeeepe   Note that 0ee  iff 0eep  and 3

ˆ
)( Iee eeR  . Therefore, if the vector of 

the estimation error is equal to zero, then the estimated relative rigid body motion cog  
equals the actual relative rigid body motion cog . 
Suppose the attitude estimation error ee  is small enough that we can let 

)(sk
ˆˆ
eeee eIe   . Therefore, using a first-order Taylor expansion approximation, the 

estimation error vector ee  can be obtained from image information )( cogf  and the 
estimated value of the relative rigid body motion cog  as follows (Fujita et al., 2007) :  

 
),)(( ffgJe coe                                                               (7) 

 

where f  is the estimated value of image information. In the same way as the basic 
representation (4), the estimation error system can be represented by 
¶(9pt) \label{eqn:V_ee} 

.Ad )( 1
b
woeg

b
ee VuV

ee
      ref 6(8) 

¶(9pt) 
It should be noted that if the vector of the estimation error is equal to zero, then the 
estimated relative rigid body motion cog  equals the actual one cog .  

¶(14pt) 
2.3 Control Error System 
In this subsection, let us consider the dual of the estimation error system, which we call the 
control error system, in order to establish the visual feedback system. We assume that wcg  
and whg  can be obtained accurately by a prior calibration procedure, then the estimated 

value of hog  is calculated as cochho ggg 1  where cog  is the estimated value which discussed 
in the previous subsection. Here, we define the control error between the actual relative 
rigid body motion hog  and desired one dg  as  

.1
hodec ggg      ref 7(9) 

¶(9pt) 
It should be noted that hog  can not be measured directory. Similar to the definition of ee , 

the vector of the control error is defined as .)]([:
ˆ TT

R
T
ecc eceepe   

Here we have to consider the way of deriving ecg  (9), because hog  can not be measured 
directory. Using eeg , the control error can be transformed as 
¶(9pt) \label{eqn:g_ec_kai} 

.11111
eehodhohohodhodec gggggggggg     ref 8(10) 

¶(9pt) 
In Equation (10), dg  and hog  are available information. While the estimation error vector 

ee  can be obtained as Equation                                                             (7), the estimation error 
matrix eeg  cannot be directly obtained, because eeg  is defined using non-measurable value 

cog  as Equation (6). Therefore, we consider the way of deriving eeg  from ee . 

Because of the definition of the estimation error vector ee , i.e., TT
R

T
eee eeeepe )]([ ̂ , the 

position estimation error eep  can be derived directly from ee . Under the condition 
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 ee , ee  can be derived as follows (Murao et al., 2008):  
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Hence, eeg  can be derived from ee  through ee . 
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The reference of the relative rigid body motion dg  is constant in this chapter, i.e., 0dg , 

hence, b
ho

b
ec VV  . Thus, the control error system can be represented as 

¶(9pt) \label{eqn:V_ec} 
.AdAd )()( 11

b
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b
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b
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     ref 10(12) 

¶(9pt) 
This is dual to the estimation error system.  

¶(14pt) 
2.4 Passivity of Visual Feedback System 
Combining (8) and (12), we construct the visual feedback system as follows:  
¶(9pt) \label{eqn:VFS } 
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where TT
e

Tb
whgce uVu

d
])Ad[(: )( 1  denotes the control input. For the design of the visual 

feedback system, it is assumed that the hand velocity b
whV  can be directly chosen. Let us 

define the error vector of the visual feedback system as TT
e

T
c eee ][:  which consists of the 

control error vector ce  and the estimation error vector ee . 
Next, we show an important relation between the input and the output of the visual 
feedback system. 

Lemma 1 (Fujita et al., 2007) : If 0b
woV , then the visual feedback system (13) satisfies 

¶(9pt) \label{eqn:PaVFS } 

 
T

cece
T
ce Tdtu0 0,     ref 12(14) 

where ce  is defined as ece :  and ce  is a positive scalar.  
Using the following positive definite function, we can prove Lemma 1.  
¶(9pt) \label{eqn:V_ce } 

)()( eeecce gEgEV      ref 13(15) 
 

where )(
2
1:)(

ˆ2 abepgE abab
  and )(tr

2
1:)(

ˆˆ
abab eIe    is the error function of the 

rotation matrix (see, e.g., (Bullo & Lewis, 2004)). 
The block diagram of the passivity of the visual feedback system is shown in Fig. 2. Let us 
take ceu  as the input and ce  as its output in Fig. 2. Thus, Lemma 1 implies that the visual 
feedback system (13) is passive from the input ceu  to the output ce  as in the definition in 
(Schaft, 2000). 
 

 

 
Fig. 2. Block diagram of the visual feedback system 

¶(14pt) 
3. Dynamic Visual Force Feedback Control 
¶(6pt) 

A force is important to complete tasks which need a contact with environments. This section 
considers the visual force feedback control with a contact force (we call the dynamic visual 
force feedback control) based on the passivity which is a main contribution in this chapter. 

¶(14pt) 
3.1 Dynamic Visual Force Feedback System 
The dynamics of n-link rigid robot manipulators with the end-effector constraint can be 
written as follows (Liu et al., 1999)  
¶(9pt) \label{eqn:ManDyn} 

  )()(),()( qJqgqqqCqqM      ref 14(16) 
where q , q  and q  are the joint angle, velocity and acceleration, respectively,   is the vector 

of the input torque. nnqM )(  is the manipulator inertia matrix, nnqqC ),(   is the 

Coriolis matrix and nqg )(  is the gravity vector.   is the contact force, nqJ )(  is 
the normalized Jacobian of the kinematic constraint  0)(q  and defined as follows.  
¶(9pt) \label{eqn:Jvarphi} 

n
T

T
q
qqJqqJ 












)()(,0)( 

     ref 15(17) 

¶(9pt) 
Equation (16) possesses several important properties which will be used in the sequel. The 

manipulator dynamics (16) is passive from   to q , that is m
T T dtq   
0

 where m  is a 

positive scalar. Moreover, ),(2)( qqCqM    is skew-symmetric by defining ),( qqC   using the 
Christoffel symbols.  
Now, we propose the control law for the manipulator as  
¶(9pt) \label{eqn:tau} 

Fsde
T
g

T
brr uJuJeqJqgqqqCqqM

d
   )( 1Ad)()(),()(   ref 16(18) 

where 
¶(9pt) \label{eqn:dqr} 

.)( edr FJqqQq       ref 17(19) 
¶(9pt)  
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manipulator dynamics (16) is passive from   to q , that is m
T T dtq   
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 where m  is a 

positive scalar. Moreover, ),(2)( qqCqM    is skew-symmetric by defining ),( qqC   using the 
Christoffel symbols.  
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¶(9pt) \label{eqn:tau} 

Fsde
T
g

T
brr uJuJeqJqgqqqCqqM

d
   )( 1Ad)()(),()(   ref 16(18) 

where 
¶(9pt) \label{eqn:dqr} 

.)( edr FJqqQq       ref 17(19) 
¶(9pt)  



Robot	Manipulators,	New	Achievements336

 

  is positive constant and  
¶(9pt)  

 
tt

de dedF
00

)(:      ref 18(20) 

where de  :  is the force error. Then, the following relation holds with respect to about 
the force error  
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Because we consider the single point contact in this chapter, the projection matrix )(qQ  can 
be simply defined as  
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which arises on the tangent space at the contact surface 0)( q  (Liu et al., 1999).  

On the other hand, the body velocity of the hand b
whV  is given by  
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where )(qJb  is the body manipulator Jacobian (Murray et al., 1994). Moreover, we define the 

desired body velocity of the hand TT
uh

T
uhh vu ][   which will be obtained from the visual 

feedback system. Then, hu can be represented as dbh qQqJu )(  by using the projection 
matrix )(qQ . 
We define the error vector with respect to the joint velocity of the manipulator dynamics as 
¶(9pt) \label{eqn:s} 
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Here, we know that the following relation holds (Liu et al., 1999)  
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Using (13)(16) and (18), the visual force feedback system with manipulator dynamics (we 
call the dynamic visual force feedback system) can be derived as follows:  
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are defined as the state, the input and the disturbance of the dynamic visual force feedback 
system, respectively. Here, we formulate the manipulator control problem as follows: 
Control problem : For the dynamic visual force feedback system with the eye-to-hand 
configuration described by (26), design a control input u such that  
¶(9pt) 
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3.2 Passivity of Dynamic Visual Force Feedback System 
Before constructing the dynamic visual force feedback control law, we derive an important 
lemma.  

Lemma 2 :  If w = 0, then the dynamic visual force feedback system  (26) satisfies 
¶(9pt) \label{eqn:PaDVFFS } 
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where Nx: ,  66 ,,,diag: IIIN n    and   is a positive scalar.  
Proof:   Consider the following positive definite function 
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Differentiating (28) with respect to time yields 
¶(9pt)  

ee
TT FFsMssMsV  

2
1  

  ee
T
Ree

T
eeec

T
Rec

T
ec eeeeeeeeecececec eeepeepeeepeep   ˆˆˆˆˆˆˆˆ

)()(     

.
2
1

Ad
0
0
0

0
Ad

0
0

0
0

0

0
0
0

)(

)(
ˆ

ˆ
sMs

V
V
F
sM

s T

b
ee

b
ec

e

e

e

T

ee

ec






















































  ref 27(29) 

¶(9pt)  

Observing that the skew-symmetry of the matrices ecp̂  and eep̂ , i.e., udec
T
ec depp ̂ˆ   
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ee pppp  , the above equation along the 

trajectories of the system (26) can be transformed into 
¶(9pt) \label{eqn:dot_V2} 
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¶(9pt)  
Integrating (30) from 0 to T, we obtain 
¶(9pt) \label{eqn:dot_V } 
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where   is a positive scalar that only depends on the initial states of s, eF , ce  and ee .  
The block diagram of the passivity of the 3D dynamic visual force feedback system is shown 
in Fig. 3.  

Remark 1 :  The visual feedback system (13) satisfies the passivity property as described in 
(14). It is well known that the manipulator dynamics (16) also has the passivity. In Lemma 2, 
the inequality (27) says that the dynamic visual force feedback system (26) is passive from the 
input TT

e
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T eeFs ][    as shown in Fig. 3.  

 

 
Fig. 3. Block diagram of the 3D dynamic visual force feedback system 

¶(14pt) 
3.3 Passivity-based Dynamic Visual Force Feedback Control 
We now propose the following control input for the interconnected system:  
¶(9pt) \label{eqn:V} 

KNxKu        ref 29(32) 
                13,,,diag:  n

ecFs KKkKK  
where  snss kkK ,,diag: 1  , Fk ,  61 ,,diag: ccc kkK   and  61 ,,diag: eee kkK   denote 
the positive gain matrices.  
Theorem 1 : If w = 0, then the equilibrium point x = 0 for the  closed-loop system (26) and 
(32)is asymptotic stable.  

 

Proof:   In the proof of Lemma 2, we have already derived that the time derivative of V 
along the trajectory of the system (26) is formulated as (30). Using the control input  (32), 
(30) can be transformed into 
¶(9pt) \label{eqn:dot_V2_k} 

.KNxNxV TT     ref 30(33) 
¶(9pt) 
This completes the proof. 
Theorem 1 shows the stability via Lyapunov method for the dynamic visual force feedback 
system. It is interesting to note that stability analysis is based on the passivity as described 
in (27). Our proposed method is valid for the 3D dynamic visual force feedback system, 
while previous works (Dean-Leon et al., 2006) (Kawai et al., 2007) consider the 2D dynamic 
visual force feedback control. Hence, we can control not only the position but also the 
orientation of the robot hand with a contact force in the visual force feedback system. 

¶(14pt) 
4. Simulation Results 
¶(6pt) 

The simulation results on 3DOF planar manipulator as depicted in Fig. 4 are shown in order 
to understand our proposed method simply, though it is valid for 3D dynamic visual force 
feedback systems. 
 

 
Fig. 4. Coordinate frames for dynamic visual force feedback system with three degree of 
freedom manipulator 
 
We present results for the stability analysis with a static target object. The simulation is 
carried out with the conditions  Twop 005.047.0  [m],  Two 000  [rad], 
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 Twcp 105.047.0  [m],  Twc 000  [rad]. The lengths of the three links of the 
manipulator are 2.01 l  [m], 2.02 l  [m] and 1.03 l  [m], respectively. The initial angles of 
the manipulator is set as 2/)0(1 q  [rad], 2/)0(3 q  [rad] and 2/)0(2 q  [rad]. In 

other words, the initial relative rigid body motion is  Twop 027.015.0   [m], 

 Tho 2/00    [rad]. The desired force d  and the desired relative rigid body 

motion ),(
ˆ
depg dd

  are given by 5d  [N],  Tdp 1003.0  [m] and  Td 000  
[rad] in this simulation. The initial errors of force and vision are calculated as 5e  [N], 

 Tecp 027.012.0   [m],  Tec 2/00    [rad],  Teep 095.053.0  [m] and 

 Tee 4/00    [rad], respectively. The controller parameters for Equation (32) were 
empirically selected as  10,10,10diagsK , 25Fk , 1 ,  0,20,4040,40,20,2diagcK  and 

650IKe  . The simulation results are shown in Figs. 5-7.  
Figs. 5-7 illustrate the control error ce , the estimatoin error ee , and the contact force  , 
respectively. In Figs. 5 and 6, we focus on the errors of the translations of x and y and the 
rotation of z, because the errors of the translation of z and the rotations of x and y are zeros 
ideally on the 3DOF planar manipulator. The control error ce  and the estimation error ee  
tended to zero, thus we can confirm that the relative rigid body motion hog  coincided with 
the desired one dg  by using image information. In Fig. 7, the pulse siglnal means the 
contact transition at around 0.2 [s]. The contact force   tended to 5 [N], i.e., converged to 
the desired one d . From these figures, the asymptotic stability can be also confirmed. 
 

 
Fig. 5. The control error ce  which defined the error between the relative rigid body motion 
of the robot hand hog  and desired one dg . Initial control errors are 12.0ecxp  [m], 

27.0ecyp  [m] and 2/ ecz  [rad], respectively. 

 

 

 
Fig. 6. The estimation error ee  which defined the error between the estimated value cog  and 
the actual relative rigid body motion cog . Initial estimation errors are 53.0eexp  [m], 

95.0eeyp  [m] and 4/ eez  [rad], respectively. 

 

 
Fig. 7. The contact force trajectory   

¶(14pt) 
5. Conclusions 
¶(6pt) 

This chapter considers 3D visual force feedback control for eye-to-hand systems.  In our 
approach, we can control not only the position but also the orientation of the robot hand 
with a contact force by using visual information. The proposed method can be regarded as 
an extension of the hybrid position/force control to the hybrid vision/force control. The 
main contribution of this chapter is to show that the visual force feedback system has the 
passivity which allows us to prove stability in the sense of Lyapunov. Both the passivity of 
the manipulator dynamics and the passivity of the visual feedback system are preserved in 
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5. Conclusions 
¶(6pt) 

This chapter considers 3D visual force feedback control for eye-to-hand systems.  In our 
approach, we can control not only the position but also the orientation of the robot hand 
with a contact force by using visual information. The proposed method can be regarded as 
an extension of the hybrid position/force control to the hybrid vision/force control. The 
main contribution of this chapter is to show that the visual force feedback system has the 
passivity which allows us to prove stability in the sense of Lyapunov. Both the passivity of 
the manipulator dynamics and the passivity of the visual feedback system are preserved in 
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the visual force feedback system. Finally simulation results are shown to verify the stability 
of the proposed method. 
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