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Abstract

This paper deals with the control and the estimation of the visual feedback systems
with a fixed camera. Firstly the fundamental representation and the nonlinear observer
for the visual feedback system with four coordinate frames is established. Secondly
the visual feedback system is composed by the control error system and the estimation
error system. Next, we derive the passivity of the visual feedback system. Finally,
stability and L2-gain performance analysis are discussed based on the passivity.

1 Introduction

Robotics and intelligent machines need many information to behave autonomously. Specif-
ically, the combination of mechanical control with visual information, so-called visual feed-
back control or visual servoing, should become extremely important, when we consider a
mechanical system working under dynamical environments [1]. Recently, technological fields
which need visual feedback control are undoubtedly increasing, such as the autonomous in-
jection of biological cells [2]. Control will be more important for intelligent machines as
future applications.

This paper deals with the control and the estimation of visual feedback systems with a
fixed camera. Kelly [3] considered the set-point problems with a static target for the visual
feedback system with a planar type manipulator. Cowan et al. [4] addressed the problems
of the target tracking and the field of view for the 3D visual feedback system by using
the navigation functions. More recently, the authors have discussed the rigid body motion
(involving both translation and rotation) control problem of visual feedback systems with
Eye-in-Hand configuration [5]. This configuration has only three coordinate frames, while
visual feedback systems typically use four coordinate frames which consist of a world frame
Σw, a target object frame Σo, a camera frame Σc and a hand (end-effector) frame Σh as
in Fig. 1. Because the camera is attached to the end-effector of robots, the camera frame
represents the hand one in Eye-in-Hand configuration.
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Figure 1: Visual feedback system with a fixed camera
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Figure 2: Pinhole camera



In this paper, we deal with the control and the estimation problems for visual feedback
systems with the four coordinate frames. Extending the number of the coordinate frames
from three to four, this framework can generalize our previous work [5]. In this framework,
we can design the control gain and the observer gain separately from each other, while the
control problem and the estimation problem of the visual feedback system are considered
in the same strategy.

Throughout this paper, we use the notation eξ̂θab ∈ R3×3 to represent the change of the
principle axes of a frame Σb relative to a frame Σa. ξab ∈ R3 specifies the direction of
rotation and θab ∈ R is the angle of rotation. Here ξ̂θab denotes ξ̂abθab for the simplicity of
notation. The notation ‘∧’ (wedge) is the skew-symmetric operator such that ξ̂θ = ξ × θ
for the vector cross-product × and any vector θ ∈ R3. The notation ‘∨’ (vee) denotes the

inverse operator to ‘∧’: i.e., so(3) → R3. gab = (pab, e
ξ̂θab) ∈ SE(3) is the description of the

configuration of a frame Σb relative to a frame Σa [6]. All proofs in this paper are omitted
due to space limitations.

2 Relative Rigid Body Motion in Visual Feedback System

2.1 Fundamental Representation for Visual Feedback System

Visual feedback systems typically use four coordinate frames which consist of a world frame
Σw, a target object frame Σo, a camera frame Σc and a hand (end-effector) frame Σh as in

Fig. 1. Then, gwh = (pwh, e
ξ̂θwh), gwc = (pwc, e

ξ̂θwc) and gwo = (pwo, e
ξ̂θwo) denote the rigid

body motion from Σw to Σh, from Σw to Σc and from Σw to Σo, respectively. Using these
coordinate frames, we will derive a fundamental representation for the three coordinate
frames of the visual feedback system. The rigid body motion gco of the target object,
relative to the camera frame Σo in Fig. 1, is given by gco = g−1

wc gwo which is obtained from
the composition rule for rigid body transformations ([6], Chap. 2, pp. 37, eq. (2.24)). Then,
a fundamental representation for the three coordinate frames of the visual feedback system
are described as follows [5].

V b
co = −Ad(g−1

co )V
b
wc + V b

wo (1)

where V b
co := [vT

co ωT
co]

T represents the body velocity of gco. vco and ωco are the velocity of the
origin and the angular velocity from Σc to Σo, respectively. Similarly, V b

wc := [vT
wc ωT

wc]
T and

V b
wo := [vT

wo ωT
wo]

T represent the body velocities of gwc and gwo. The notation Ad(g) denotes
the adjoint transformation associated with gab [6].

2.2 Camera Model

Next, we derive the model of a pinhole camera with a perspective projection as shown
in Fig. 2. Let λ be a focal length, poi ∈ R3 and pci ∈ R3 be coordinates of the target
object’s i-th feature point relative to Σo and Σc, respectively. Using a transformation of the
coordinates, we have pci = gcopoi where pci and poi should be regarded as [pT

ci 1]T and [pT
oi 1]T

via the well-known representation in robotics, respectively (see, e.g., [6]). The perspective
projection of the i-th feature point onto the image plane gives us the image plane coordinate
fi := [fxi fyi]

T ∈ R2 as follows

fi =
λ

zci

[
xci

yci

]
(2)

where pci := [xci yci zci]
T . It is straightforward to extend this model to the m image points

case by simply stacking the vectors of the image plane coordinate, i.e. f := [fT
1 · · · fT

m]T ∈
R2m. We assume that multiple point features on a known object can be used.



2.3 Nonlinear Observer for Visual Feedback System

The visual information f which includes the relative rigid body motion can be exploited,
while the relative rigid body motion gco can not be obtained directly in the visual feedback
system. Hence, we consider a nonlinear observer in order to estimate the relative rigid
body motion from the image information. In the case of the fixed camera configuration,
i.e. V b

wc = 0, (1) is rewritten as V b
co = V b

wo. Hence, we shall consider the following model
which is reproduced from the above relation.

V̄ b
co = ue (3)

where V̄ b
co := [v̄T

co ω̄T
co]

T means the estimated body velocity. Here, ḡco = (p̄co, e
ˆ̄ξθ̄co) denotes

the estimated relative rigid body motion. The new input ue is to be determined in order to
converge the estimated value to the actual relative rigid body motion. Because the design
of ue needs a property of the whole visual feedback system, we will propose ue in Section 3.

Similarly to (2), the estimated image feature point f̄i (i = 1, · · · , m) should be described as

f̄i =
λ

z̄ci

[
x̄ci

ȳci

]
(4)

where p̄ci = ḡcopoi and p̄ci := [x̄ci ȳci z̄ci]
T . f̄ := [f̄T

1 · · · f̄T
m]T ∈ R2m means the m image

points case.

In order to establish the estimation error system, we define the estimation error between
the estimated value ḡco and the actual relative rigid body motion gco as gee = ḡ−1

co gco. Using

the notation eR(eξ̂θ), the vector of the estimation error is given by ee := [pT
ee eT

R(eξ̂θee)]T .

As mentioned in [5], the relation between the actual image information and the estimated
one can be given by

f − f̄ = J(ḡco)ee (5)

where J(ḡco) is defined in [5]. We assume that the matrix J(ḡco) is full column rank for all
ḡco ∈ SE(3). Then, the relative rigid body motion can be uniquely defined by the image
feature vector.

The above discussion shows that we can derive the vector of the estimation error ee from
image information f and the estimated value of the relative rigid body motion ḡco,

ee = J †(ḡco)(f − f̄) (6)

where † denotes the pseudo-inverse. Therefore the estimation error ee can be exploited in
the 3D visual feedback control law using image information f obtained from the camera.
Hence, the nonlinear observer is constructed by (3)–(4) and the estimation input ue which
can be determined from ee in (6) with an estimation gain in Section 3.4.

2.4 Estimation Error System

Differentiating the estimation error gee, we can obtain the estimation error system as follows

V b
ee = −Ad(g−1

ee )ue + V b
wo. (7)

It should be noted that if the vector of the estimation error is equal to zero, then the
estimated relative rigid body motion ḡco equals the actual one gco.



3 Passivity-based Visual Feedback Control

3.1 Control Error System

From the composition rule for rigid body transformations, the relative rigid body motion
from Σh to Σo is described as gho = g−1

ch gco. Because gco can not be obtained directly,
we represent the relative rigid body motion from Σh to Σo with the estimated one ḡco as
ḡho = g−1

ch ḡco. It is supposed that the relative rigid body motion from Σc to Σh, i.e. gch,
can be measured exactly. Since the problem of the camera calibration is one of important
research topics and good solutions to it are reported in some papers (see, e.g., [7]), we will
not consider the error of the camera calibration in this paper.

Then, the fundamental representation of the relative rigid body motion ḡho will be obtained
in the same way as (1).

V̄ b
ho = −Ad(ḡ−1

ho )V
b
wh + ue (8)

where we exploit (3) and the relation V b
ch = V b

wh which is derived from the composition rule.
Here we define the control error between the estimated value ḡho and the reference of the
relative rigid body motion gd as gec = g−1

d ḡho. It should be remarked that the estimated
relative rigid body motion equals the reference one if and only if the control error is equal

to the identity matrix in matrix form, i.e. pd = p̄ho and eξ̂θd = e
ˆ̄ξθ̄ho iff gec = I4. Using the

notation eR(eξ̂θ), the vector of the control error is defined as ec := [pT
ec eT

R(eξ̂θec)]T . Note

that ec = 0 iff pec = 0 and eξ̂θec = I3.

Similarly to (7), the model of the control error can be obtained as

V b
ec = −Ad(ḡ−1

ho )V
b
wh + ue − Ad(g−1

ec )V
b
d (9)

where V b
d := [vT

d ωT
d ]T and V̂ b

d := g−1
d ġd.

3.2 Visual Feedback System

Combining (7) and (9), we construct the visual feedback system as follows[
V b

ec

V b
ee

]
=

[−Ad(ḡ−1
ho ) I

0 −Ad(g−1
ee )

][
V b

wh

ue

]
+

[ −Ad(g−1
ec )

0

]
V b

d +

[
0
I

]
V b

wo. (10)

Using the relation of the adjoint transformation, i.e. Ad(g−1
ec ) = Ad(ḡ−1

ho )Ad(ḡd), the above

equation (10) can be rewritten as[
V b

ec

V b
ee

]
=

[−Ad(ḡ−1
ho ) I

0 −Ad(g−1
ee )

]
uce +

[
0
I

]
V b

wo, uce :=

[
V b

wh + Ad(gd)V
b
d

ue

]
(11)

denotes the control input for the visual feedback system. Let us define the error vector of

the visual feedback system as e :=
[
eT

c eT
e

]T
. It should be noted that if the vectors of the

control error and the estimation error are equal to zero, then the estimated relative rigid
body motion ḡho equals the reference one gd and the estimated one ḡco equals the actual
one gco, respectively. Moreover, the error and the error vector between h̄co and gho can
be also represented as gee and ee, while gee and ee are defined as the error and the error
vector between ḡco and gco. Therefore, the actual relative rigid body motion gho tends to
the reference one gd when e → 0.
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Figure 3: Block diagram of the visual feedback system

3.3 Property of Visual Feedback System

Now, we show an important lemma concerning a relation between the input and the output
of the visual feedback system.

Lemma 1 If V b
wo = 0, then the visual feedback system (11) satisfies∫ T

0

uT
ceνcedτ ≥ −βce, ∀T > 0 (12)

where νce is defined as

νce := Ncee, Nce :=

[
−AdT

(g−1
d )

0

Ad(e−ξ̂θec) −I

]
(13)

and βce is a positive scalar.

The block diagram of the visual feedback system is shown in Fig. 3. OMFC and HMFC
represent the object motion relative to the camera frame Σo and the hand motion relative
to the camera frame Σo, respectively.

Remark 1 Let us take uce as the input and νce as its output in Fig. 3. Then, Lemma
1 would suggest that the visual feedback system (11) is passive from the input uce to the
output νce just formally.

3.4 Stability Analysis for Visual Feedback System

It is well known that there is a direct link between passivity and Lyapunov stability. Thus,
we propose the following control input.

uce = −Kceνce = −KceNcee, Kce :=

[
Kc 0
0 Ke

]
(14)

where Kc := diag{kc1, · · · , kc6} and Ke := diag{ke1, · · · , ke6} are the positive gain matrices
of x, y and z axes of the translation and the rotation for the control error and the estimation
error, respectively. The result with respect to asymptotic stability of the proposed control
input (14) can be established as follows.

Theorem 1 If V b
wo = 0, then the equilibrium point e = 0 for the closed-loop system (11)

and (14) is asymptotic stable.

Theorem 1 shows the stability via Lyapunov method for the full 3D visual feedback system.
It is interesting to note that stability analysis is based on the passivity as described in (12).



3.5 L2-gain Performance Analysis for Visual Feedback System

Based on the dissipative systems theory, we consider L2-gain performance analysis for the
visual feedback system (11) in one of the typical problems, i.e. the disturbance attenuation
problem. Now, let us define

P := NT
ceKceNce − 1

2γ2
W − 1

2
I (15)

where γ ∈ R is positive and W := diag{0, I}. Then we have the following theorem.

Theorem 2 Given a positive scalar γ and consider the gains Kc and Ke such that the
matrix P is positive semi-definite, then the closed-loop system (11) and (14) has L2-gain
≤ γ.

The L2-gain performance analysis of the visual feedback system is discussed via the dissipa-
tive systems theory. In H∞-type control, we can consider some problems by establishing the
adequate generalized plant. This paper has discussed L2-gain performance analysis for the
disturbance attenuation problem. The proposed strategy can be extended for the other-type
of generalized plants of the visual feedback systems.

4 Conclusions

This paper dealt with the control and the estimation of the visual feedback systems with
a fixed camera. The main contribution of this work is that the visual feedback system
with four coordinate frames is constructed in order to generalize our previous works. In
this framework, we can design the control gain and the observer gain separately from each
other, while the control problem and the estimation problem of the visual feedback system
are considered in the same strategy. Stability and L2-gain performance analysis for the
visual feedback system have been discussed based on passivity.
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