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Abstract— This paper deals with the control and the es-
timation of dynamic visual feedback systems with a fixed
camera. Specifically, we consider the target tracking problem
of dynamic visual feedback systems in the three dimen-
sional(3D) workspace. Firstly the model of the visual feedback
system with four coordinate frames is established by using the
homogeneous representation and adjoint transformation. Sec-
ondly we derive the passivity of the dynamic visual feedback
system by combining the manipulator dynamics and the visual
feedback system. Based on the passivity, stability and L2-gain
performance analysis are discussed. Finally simulation results
are shown to verify the stability and L2-gain performance of
the dynamic visual feedback system.

I. INTRODUCTION

Robotics and intelligent machines need many information
to behave autonomously under dynamical environments.
Visual information is undoubtedly suited to recognize un-
known surroundings. Vision based control of robotic sys-
tems involves the fusion of robot kinematics, dynamics, and
computer vision to control the motion of the robot in an
efficient manner. The combination of mechanical control
with visual information, so-called visual feedback control or
visual servoing, should become extremely important, when
we consider a mechanical system working under dynamical
environments [1], [2]. Recently, technological fields which
need visual feedback control are undoubtedly increasing,
such as the autonomous injection of biological cells [3], the
laparoscopic surgery [4] and so on. Control will be more
important for intelligent machines as future applications.

Classical visual servoing algorithms assume that the
manipulator dynamics is negligible and do not interact with
the visual feedback loop. However, as stated in [5], this
assumption is invalid for high speed tasks, while it holds
for kinematic control problems. Kelly [5] considered the set-
point problems with a static target for the dynamics visual
feedback system which includes the manipulator dynamics.
In [6], Bishop et al. proposed an inverse dynamics based
control law for the position tracking and the camera cali-
bration problems of the dynamics visual feedback system.
Recently, Zergeroglu et al. developed an adaptive control
law for the position tracking and the camera calibration
problems of the dynamics visual feedback system with
parametric uncertainties in [7]. Although these control laws
guarantee the stability of the system based on the Lyapunov
method and are effective for the dynamics visual feedback
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system, robot manipulators are unfortunately limited to the
planar type.

On the other hand, Kelly et al. [8] considered a simple
image-based controller for dynamic visual feedback system
in the three dimensional(3D) workspace under the assump-
tion that the objects’ depths are known. Cowan et al. [9]
addressed the problems of the target tracking and the field
of view for the 3D dynamic visual feedback system by
using the navigation functions. More recently, the authors
proposed the passivity-based dynamic visual feedback con-
trol for the 3D target tracking problem with the Eye-in-
Hand configuration in [13]. However, this configuration
has only three coordinate frames, while visual feedback
systems typically use four coordinate frames which consist
of a world frame Σw, a target object frame Σo, a camera
frame Σc and a hand (end-effector) frame Σh as in Fig. 1.
Because the camera is attached to the end-effector of robots,
the camera frame represents the hand one in Eye-in-Hand
configuration.
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Fig. 1. Visual feedback system with a fixed camera

In this paper, we deal with the control and the estimation
problems for dynamic visual feedback systems with the four
coordinate frames. Extending the number of the coordinate
frames from three to four, this framework can generalize
our previous works [10], [11], [12], [13]. Specifically, we
consider the target tracking problem of visual feedback
systems with a fixed camera in the 3D workspace. In this
framework, we can design the control gain and the observer
gain separately from each other, while the control problem
and the estimation problem of the visual feedback system
are considered in the same strategy. Moreover, we can de-
rive that the dynamic visual feedback system preserves the



passivity of the visual feedback system which is obtained
in our previous works. Stability and L2-gain performance
analysis for the dynamic visual feedback system will be
discussed based on passivity with an energy function.

Throughout this paper, we use the notation eξ̂θab ∈ R3×3

to represent the change of the principle axes of a frame
Σb relative to a frame Σa. The notation ‘∧’ (wedge) is the
skew-symmetric operator such that ξ̂θ = ξ×θ for the vector
cross-product × and any vector θ ∈ R3. The notation ‘∨’
(vee) denotes the inverse operator to ‘∧’: i.e., so(3) → R3.
ξab ∈ R3 specifies the direction of rotation and θab ∈ R
is the angle of rotation. Here ξ̂θab denotes ξ̂abθab for the
simplicity of notation. We use the 4 × 4 matrix

gab =
[

eξ̂θab pab

0 1

]
(1)

as the homogeneous representation of gab = (pab, e
ξ̂θab) ∈

SE(3) which is the description of the configuration of a
frame Σb relative to a frame Σa. The adjoint transformation
associated with gab is denoted by Ad(gab) [14]. Let us define
the vector form of the rotation matrix as eR(eξ̂θab) :=
sk(eξ̂θab)∨ where sk(eξ̂θab) denotes 1

2
(eξ̂θab − e−ξ̂θab).

II. PASSIVITY-BASED VISUAL FEEDBACK SYSTEM

A. Fundamental Representation for Visual Feedback System

Visual feedback systems typically use four coordinate
frames which consist of a world frame Σw, a target object
frame Σo, a camera frame Σc and a hand (end-effector)
frame Σh as in Fig. 1. Then, gwh = (pwh, eξ̂θwh) ∈ SE(3),
gwc = (pwc, e

ξ̂θwc) ∈ SE(3) and gwo = (pwo, e
ξ̂θwo) ∈

SE(3) denote the rigid body motion from Σw to Σh, from
Σw to Σc and from Σw to Σo, respectively. Similarly,
the relative rigid body motion from Σc to Σh, from Σc

to Σo and from Σh to Σo can be represented by gch =
(pch, eξ̂θch) ∈ SE(3), gco = (pco, e

ξ̂θco) ∈ SE(3) and
gho = (pho, e

ξ̂θho) ∈ SE(3), respectively. as shown in
Fig. 1.

The objective of the visual feedback control is to bring
the actual relative rigid body motion gho = (pho, e

ξ̂θho) to a
given reference gd = (pd, e

ξ̂θd). Our goal is to determine the
hand’s motion using the visual information for this purpose.

Hence we will extend the passivity-based approach which
is proposed for the visual feedback system with Eye-in-
Hand configuration in [13] to the visual feedback system
with the four coordinates. In other words, we consider
the relative rigid body motion from Σc to Σo, i.e. gco =
(pco, e

ξ̂θco), and the control problem of the relative rigid
body motion from Σh to Σo, i.e. gho = (pho, e

ξ̂θho).
However, the relative rigid body motion gco =

(pco, e
ξ̂θco) can not be immediately obtained in the vi-

sual feedback system, because the target object velocity
is unknown and furthermore can not be measured directly.
Hence, we consider the estimation problem of the relative
rigid body motion gco.

The relative rigid body motion from Σc to Σo can be led
by using the composition rule for rigid body transformations
([14], Chap. 2, pp. 37, eq. (2.24)) as follows

gco = g−1
wc gwo. (2)

The model of the relative rigid body motion involves the
velocity of each rigid body. To this aid, let us consider the
velocity of a rigid body as described in [14]. Now, we define
the body velocity of the camera relative to the world frame
Σw as

V̂ b
wc = g−1

wc ġwc =
[

ω̂wc vwc

0 0

]
V b

wc =
[

vwc

ωwc

]
(3)

where vwc and ωwc represent the velocity of the origin
and the angular velocity from Σw to Σc, respectively ([14]
Chap. 2, eq. (2.55)). Similarly, the body velocity of the
target object relative to Σw will be denoted as

V̂ b
wo = g−1

wo ġwo =
[

ω̂wo vwo

0 0

]
V b

wo =
[

vwo

ωwo

]
(4)

where vwo and ωwo are the velocity of the origin and the
angular velocity from Σw to Σo, respectively.

Then, the model of the relative rigid body motion gco is
described as follows [13].

V b
co = −Ad(g−1

co )V
b
wc + V b

wo (5)

where V b
co := [vT

co ωT
co]T and V̂ b

co := g−1
co ġco. The notation

Ad(gab) means the adjoint transformation associated with
gab [14]. In the case of the fixed camera configuration,
i.e. V b

wc = 0, the model of the relative rigid body motion
gco can be rewritten as

V b
co = V b

wo. (6)

Roughly speaking, if both the camera and the target object
move, then the relative rigid body motion gco = (pco, e

ξ̂θco)
will be derived from the difference between the camera
velocity V b

wc and the target object velocity V b
wo. Hence, the

model of the relative rigid body motion from Σc to Σo

equals the target object velocity V b
wo.

B. Nonlinear Observer

To estimate the relative rigid body motion gco using
visual information provided by a computer vision system.
Due to space limitations, the reader is referred to [13] for
the camera model and the visual information f .

The visual information f which includes the relative
rigid body motion can be exploited, while the relative rigid
body motion gco can not be obtained directly in the visual
feedback system. Hence, we consider a nonlinear observer
in order to estimate the relative rigid body motion from the
image information.

We shall consider the following dynamic model which
just comes from the actual relative rigid body motion model
(6).

V̄ b
co = ue (7)



where V̄ b
co := [v̄T

co ω̄T
co]T and ˆ̄V b

co := ḡ−1
co

˙̄gco mean the
estimated body velocity. Here, ḡco = (p̄co, e

ˆ̄ξθ̄co) denotes
the estimated relative rigid body motion. The new input ue

is to be determined in order to converge the estimated value
to the actual relative rigid body motion. Because the design
of ue needs a property of the whole visual feedback system,
we will propose ue in Section III-B

In order to establish the estimation error system, we
define the estimation error between the estimated value ḡco

and the actual relative rigid body motion gco as

gee = ḡ−1
co gco, (8)

in other words, pee = e−
ˆ̄ξθ̄co (pco − p̄co) and eξ̂θee =

e−
ˆ̄ξθ̄coeξ̂θco . Note that pco = p̄co and eξ̂θco = e−

ˆ̄ξθ̄co iff
gee = I4, i.e. pee = 0 and eξ̂θee = I3.

Using the notation eR(eξ̂θ), the vector of the estimation
error is given by ee := [pT

ee eT
R(eξ̂θee)]T . Note that ee = 0

iff pee = 0 and eξ̂θee = I3. Therefore, if the vector of the
estimation error is equal to zero, then the estimated relative
rigid body motion ḡco equals the actual relative rigid body
motion gco.

Omitting details due to space limitations, we can derive
the vector of the estimation error ee from image information
f and the estimated value of the relative rigid body motion
(p̄co, e

ˆ̄ξθ̄co),

ee = J†(ḡco)(f − f̄) (9)

where J(ḡco) and f̄ are the image Jacobian and the esti-
mated image information, and † denotes the pseudo-inverse
[13]. Therefore the estimation error ee can be exploited in
the 3D visual feedback control law using image information
f obtained from the camera. Hence, the estimation input ue

which can be determined from ee in (9) with an estimation
gain in Section III-B.

C. Estimation Error System

The estimation error system will be derived in the same
way as the fundamental representation for the visual feed-
back system. Differentiating (8) with respect to time, we
can obtain

ġee = −(ḡ−1
co

˙̄gco)gee + gee(g−1
co ġco)

= −ûegee + geeV̂
b
wo. (10)

We multiply both sides of (10) by g−1
ee to obtain

g−1
ee ġee = −g−1

ee ûegee + V̂ b
wo. (11)

Furthermore, using the property concerning the adjoint
transformation, the above equation can be transformed into
the following

V b
ee = −Ad(g−1

ee )ue + V b
wo. (12)

Eq. (12) represents the model of the estimation error system.
It should be noted that if the vector of the estimation error is
equal to zero, then the estimated relative rigid body motion
ḡco equals the actual one gco.

D. Control Error System

Let us derive the control error system. Similarly to (2),
the relative rigid body motion from Σh to Σo is described
as

gho = g−1
ch gco. (13)

Because gco can not be obtained directly, we represent the
relative rigid body motion from Σh to Σo with the estimated
one ḡco as

ḡho = g−1
ch ḡco. (14)

Here gch = g−1
wc gwh can be obtained directly, because the

rigid body motion gwc = (pwc, e
ξ̂θwc) from Σw to Σc

and gwh = (pwh, eξ̂θwh) from Σw to Σh is known by the
structure of the system and the angle of the manipulator. It
is supposed that the relative rigid body motion from Σc to
Σh, i.e. gch, can be measured exactly. Since the problem of
the camera calibration is one of important research topics
and good solutions to it are reported in some papers (see,
e.g., [6], [7]), we will not consider the error of the camera
calibration in this paper.

Then, the model of the relative rigid body motion ḡho

will be obtained in the same way as (5).

V̄ b
ho = −Ad(ḡ−1

ho )V
b
ch + V̄ b

co

= −Ad(ḡ−1
ho )V

b
wh + ue (15)

where we exploit (7) and V b
ch = V b

wh which is derived from
gch = g−1

wc gwh. Here we define the control error between
the estimated value ḡho and the reference of the relative
rigid body motion gd as

gec = g−1
d ḡho. (16)

It should be remarked that the estimated relative rigid body
motion equals the reference one if and only if the control
error is equal to the identity matrix in matrix form, i.e. pd =
p̄ho and eξ̂θd = e

ˆ̄ξθ̄ho iff gec = I4. Using the notation
eR(eξ̂θ), the vector of the control error is defined as ec :=
[pT

ec eT
R(eξ̂θec)]T . Note that ec = 0 iff pec = 0 and eξ̂θec =

I3.
Similarly to (12), the model of the control error can be

obtained as

V b
ec = −Ad(g−1

ec )V
b

d + V̄ b
ho

= −Ad(ḡ−1
ho )V

b
wh + ue − Ad(g−1

ec )V
b

d (17)

where V b
d := [vT

d ωT
d ]T and V̂ b

d := g−1
d ġd.

E. Property of Visual Feedback System

Combining (12) and (17), we construct the visual feed-
back system as follows[

V b
ec

V b
ee

]
=

[
−Ad(ḡ−1

ho ) I

0 −Ad(g−1
ee )

][
V b

wh

ue

]

+
[ −Ad(g−1

ec )

0

]
V b

d +
[

0
I

]
V b

wo. (18)



Using the relation of the adjoint transformation, i.e.
Ad(g−1

ec ) = Ad(ḡ−1
ho )Ad(ḡd), the above equation (18) can be

rewritten as[
V b

ec

V b
ee

]
=

[
−Ad(ḡ−1

ho ) I

0 −Ad(g−1
ee )

]
uce +

[
0
I

]
V b

wo (19)

where

uce :=
[

V b
wh + Ad(gd)V

b
d

ue

]
(20)

denotes the control input for the visual feedback system.
Let us define the error vector of the visual feedback system
as e :=

[
eT
c eT

e

]T which contains of the control error vector
ec and the estimation error vector ee. It should be noted that
if the vectors of the control error and the estimation error
are equal to zero, then the estimated relative rigid body
motion ḡho equals the reference one gd and the estimated
one ḡco equals the actual one gco, respectively. Moreover,
the error and the error vector between ḡho and gho can be
also represented as gee and ee by (8), (13) and (14), while
gee and ee are defined as the error and the error vector
between ḡco and gco in (8). Therefore, the actual relative
rigid body motion gho tends to the reference one gd when
e → 0.

Now, we show an important lemma concerning a relation
between the input and the output of the visual feedback
system.

Lemma 1: If V b
wo = 0, then the visual feedback system

(19) satisfies ∫ T

0

uT
ceνcedτ ≥ −βce, ∀T > 0 (21)

where νce is defined as

νce :=

[
−AdT

(g−1
d )

0
Ad(e−ξ̂θec) −I

]
e (22)

and βce is a positive scalar.
This proof is not difficult using the same approach as in

[13], and is omitted here due to space limitations.
Let us take uce as the input and νce as its output. Then,

Lemma 1 would suggest that the visual feedback system
(19) is passive from the input uce to the output νce just
formally as in the definition in [16].

III. DYNAMIC VISUAL FEEDBACK CONTROL

A. Dynamic Visual Feedback System

The manipulator dynamics can be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τd (23)

where q, q̇ and q̈ are the joint angles, velocities and
accelerations, respectively. τ is the vector of the input
torques and τd represents a disturbance input.

The body velocity of the hand V b
wh is given by

V b
wh = Jb(q)q̇ (24)

where Jb(q) is the manipulator body Jacobian [14]. We
define the reference of the joint velocities as q̇d := J†

b (q)ud

where ud represents the desired body velocity of the hand.
Let us define the error vector with respect to the joint

velocities of the manipulator dynamics as ξ := q̇−q̇d. Here,
we define the weight matrices Wc := diag{wpcI3, wrcI3}
∈ R6×6 and We := diag{wpeI3, wreI3} ∈ R6×6 where
wpc, wrc, wpe, wre ∈ R are positive. Now, we consider
the passivity–based dynamic visual feedback control law as
follows.

τ = M(q)q̈d + C(q, q̇)q̇d + g(q)
+JT

b (q)AdT
(g−1

d )
Wcec + uξ. (25)

The new input uξ is to be determined in order to achieve
the control objectives.

Using (19), (23) and (25), the visual feedback system
with manipulator dynamics (we call the dynamic visual
feedback system) can be derived as follows⎡
⎣ ξ̇

V b
ec

V b
ee

⎤
⎦ =

⎡
⎢⎣ −M−1Cξ + M−1JT

b AdT
(g−1

d )
Wcec

−Ad(ḡ−1
ho )Jbξ

0

⎤
⎥⎦

+

⎡
⎣M−1 0 0

0 −Ad(ḡ−1
ho ) I

0 0 −Ad(g−1
ee )

⎤
⎦ u +

⎡
⎣M−1 0

0 0
0 I

⎤
⎦ [

τd

V b
wo

]

z =
[

εx
ρu

]
(26)

where

x :=

⎡
⎣ ξ

ec

ee

⎤
⎦ , u :=

⎡
⎣ uξ

ud + Ad(gd)V
b

d

ue

⎤
⎦ .

ε and ρ are weight matrices for the state and the input,
respectively. We define the disturbance of dynamic visual
feedback system as w :=

[
τT
d (V b

wo)
T
]T . Before construct-

ing the dynamic visual feedback control law, we derive an
important lemma.

Lemma 2: If w = 0, then the dynamic visual feedback
system (26) satisfies∫ T

0

uTνdτ ≥ −β, ∀T > 0 (27)

where

ν := Nx, N :=

⎡
⎢⎣

I 0 0
0 −AdT

(g−1
d )

Wc 0
0 Ad(e−ξ̂θec )Wc −We

⎤
⎥⎦ .

Proof: Consider the following positive definite func-
tion

V (x) =
1
2
ξT Mξ +

1
2
wpc‖pec‖2 + wrcφ(eξ̂θec)

+
1
2
wpe‖pee‖2 + wreφ(eξ̂θee ). (28)



Differentiating (28) with respect to time yields

V̇ =
1
2
ξT Ṁξ

+xT

⎡
⎣ M(q) 0 0

0 WcAd(eξ̂θec ) 0
0 0 WeAd(eξ̂θee )

⎤
⎦
⎡
⎣ ξ̇

V b
ec

V b
ee

⎤
⎦ .(29)

Observing that the skew-symmetry of the matrices p̂ec and
p̂ee, i.e., pT

ecp̂ece
−ξ̂θdωwh = −pT

ec(e
−ξ̂θdωwh)∧pec = 0,

pT
eep̂eeωwe = −pT

eeω̂wepee = 0, the above equation along
the trajectories of the system (26) can be transformed into

V̇ = xT

⎡
⎣ I 0 0

0 −WcAd(g−1
d ) WcAd(eξ̂θec )

0 0 −We

⎤
⎦ u. (30)

Integrating (30) from 0 to T , we can obtain∫ T

0

uT νdτ = V (x(T )) − V (x(0))

≥ −V (x(0)) := −β (31)

where β is the positive scalar which only depends on the
initial states of ξ, gec and gee.

Remark 1: Similarly to Lemma 1, Lemma 2 would sug-
gest that the dynamic visual feedback system is passive
from the input u to the output ν just formally. From Lemma
2, we can state that the dynamic visual feedback system (26)
preserves the passivity of the visual feedback system (19).
This is one of main contributions of this work.

B. Stability Analysis for Dynamic Visual Feedback System

It is well known that there is a direct link between
passivity and Lyapunov stability. Thus, we propose the
following control input.

u = −Kν = −KNx, K :=

⎡
⎣ Kξ 0 0

0 Kc 0
0 0 Ke

⎤
⎦ (32)

where Kξ := diag{kξ1, · · · , kξn} denotes the positive gain
matrix for each joint axis. Kc := diag{kc1, · · · , kc6} and
Ke := diag{ke1, · · · , ke6} are the positive gain matrices
of x, y and z axes of the translation and the rotation for
the control error and the estimation error, respectively. The
result with respect to asymptotic stability of the proposed
control input (32) can be established as follows.

Theorem 1: If w = 0, then the equilibrium point x =
0 for the closed-loop system (19) and (32) is asymptotic
stable.

Theorem 1 can be proved using the energy function
(28) as a Lyapunov function, and is omitted here due to
space limitations. Considering the manipulator dynamics,
Theorem 1 shows the stability via Lyapunov method for
the full 3D dynamic visual feedback system. It is interesting
to note that stability analysis is based on the passivity as
described in (27).

C. L2-gain Performance Analysis for Dynamic Visual Feed-
back System

Based on the dissipative systems theory, we consider L2-
gain performance analysis for the dynamic visual feedback
system (26) in one of the typical problems, i.e. the distur-
bance attenuation problem. Now, let us define

P := NT KN − 1
2γ2

W − 1
2
‖ε‖2 − 1

2
‖ρKN‖2

where γ ∈ R is positive and W := diag{I, 0, W 2
e }. Then

we have the following theorem.
Theorem 2: Given a positive scalar γ and consider the

control input (32) with the weight matrices ε, ρ, Wc and
We and the gains Kξ, Kc and Ke such that the matrix P
is positive semi-definite, then the closed-loop system (26)
and (32) has L2-gain ≤ γ.

This proof is omitted due to space limitations. Theorem
2 can be proved using the energy function (28) as a storage
function for L2-gain performance analysis. γ represents a
disturbance attenuation level for the dynamic visual feed-
back system. Therefore, the passivity of the dynamic visual
feedback system is particularly important in our framework.

IV. SIMULATION

The simulation results on the two degree-of-freedom
manipulator as depicted in Fig. 2 are shown in order to
understand our proposed method simply, though it is valid
for 3D visual feedback systems. The target object has four
feature points and moves for t = 4.8 [s] moves along
a straight line (0 ≤ t < 2) and a “Figure 8” motion
(2 ≤ t < 4.8) as depicted in Fig. 3 and Fig. 4, respectively.
Specifically, we use the reference of the relative rigid body
motion as a constant value, i.e. pd = [0 0 −0.81]T , eξ̂θd = I
and V b

d = 0, for the tracking problems in the simulation.
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Fig. 2. Coordinate frames for dynamic visual feedback system with two
degree of freedom manipulator

Firstly, we design the weight matrices concerning con-
trolled output as ε = diag{0.4, 0.4, 1, 1, 0.25, 0.25, 0.25,
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Fig. 3. Trajectory of target object
along the straight line in 0 ≤ t < 2
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Fig. 4. Trajectory of target object
along the “Figure 8” in 2 ≤ t < 4.8
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Fig. 5. Euclid norms of z(Gain A: dashed, Gain B: solid)

1, 2.5, 2.5, 0.025, 0.025, 0.025, 2.5}, ρ = diag{200, 200,
2, 2, 1, 1, 1, 2, 0.1, 0.1, 0.001, 0.001, 0.001, 0.1} × 10−3.
Also, we select the weight matrices for control design as
Wc = 0.1I and We = I. Control gain of manipulator is
chosen as Kξ = diag{20, 20} and gains Kc and Ke are
chosen as follows

Gain A : Kc = diag{100, 100, 50, 50, 50, 100}, Ke = 25I

Gain B : Kc = diag{2, 2, 1, 1, 1, 2}× 102, Ke = 50I.

Then, the closed-loop system (26) and (32) with gain A has
γ = 0.229 and with gain B has γ = 0.159.

In Fig. 5, dashed line and solid line show the norm of z
in the case of γ = 0.229 and γ = 0.159, respectively. In the
case of static target object, i.e. after t = 4.8 [s], all errors in
Fig. 5 tend to zero. It can be concluded that the equilibrium
point is asymptotically stable if the target object is static.
In the case of γ = 0.159, the performance is improved as
compared to the case of γ = 0.229. After all, the simulation
results show that L2-gain is adequate for the performance
measure of the dynamic visual feedback control.

V. CONCLUSIONS

This paper dealt with the control and the estimation
of dynamic visual feedback systems with a fixed camera.
The main contribution of this work is that the dynamic
visual feedback system with four coordinate frames is
constructed in order to generalize our previous works. In

this framework, we can design the control gain and the
observer gain separately from each other, while the control
problem and the estimation problem of the visual feedback
system are considered in the same strategy. Stability and L2-
gain performance analysis for the dynamic visual feedback
system have been discussed based on passivity with the
energy function. The experimental results is omitted due to
space limitations, the reader is referred to [17] for more
details.

In our future work, we will establish the more general
framework by combining Eye-in-Hand configuration with
the four coordinate frames. Additionally, we consider that
the reference velocity V b

d will play a role in the trajectory
planning of the dynamic visual feedback systems.
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