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Abstract

This paper investigates vision–based control for the relative rigid body motion (po-
sitions and rotations) using the adjoint transformation. Firstly the relation between
the rigid body velocity and the adjoint transformation is stated. Secondly the model
of the relative rigid body motion and the nonlinear observer with the adjoint transfor-
mation are considered in order to derive the visual feedback system. The property of
estimated error dynamics can be derived using the energy function. Finally stability
and L2-gain performance analysis are discussed based on the property of the visual
feedback system which is similar to passivity.

1 Introduction

Vision based control of robotic systems involves the fusion of robot kinematics, dynamics,
and computer vision system to control the position of the robot end-effector in an efficient
manner. The combination of mechanical control with visual information, so-called visual
feedback control or visual servo, should become extremely important, when we consider a
mechanical system working under dynamical environments [1, 2]. Recently, autonomous
injection of biological cells has been discussed using visual feedback control [3] and fields
which need visual feedback control are increasing.

This paper deals with the relative rigid body motion control of a moving target object
with respect to the camera frame. This control problem is standard and important, and
has gained much attention of researchers for many years. Kelly et al. [4] have considered a
simple image-based controller for the 3-D visual feedback system under the assumption that
the objects’ depths are known. Their controller has guaranteed that the overall closed-loop
system is stable by invoking the Lyapunov direct method. Several approaches have been
proposed to guarantee global stability [5, 6, 7]. Visual feedback systems of the eye-in-hand
configuration typically use three coordinate frames which consist of a world frame, a target
object frame and a camera (end-effector) frame. In this control strategy, one of the control
objectives is to track the moving target object in a three-dimensional workspace by image
information. Hence the model of the relative rigid body transformation, which represents
the position and orientation of the target object frame relative to the camera frame, can be
described by the nonlinear systems on the group of rigid motions, which shall be denoted
as SE(3). The typical example is shown in Fig. 1. Hence the dynamics of the relative
rigid body motion is described by the nonlinear systems in a 3-D workspace. Nevertheless,
previous works hardly regard the rotation between the camera frame and the object frame
as the state of the 3-D visual feedback system.

In this paper, we investigate the rigid body motion (involving both translation and rotation)
control problem of vision-based robotic systems. In order to regard the rotation as the state
for visual feedback system, we derive the relative rigid body motion dynamics between
the moving target object and the camera using the homogeneous representation and the
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Figure 1: Eye-in-Hand visual feedback system

adjoint transformation. Further, we consider a nonlinear observer for constructing a 3-D
visual feedback system. Stability and L2-gain performance analysis for the full 3-D visual
feedback system will be discussed based on passivity with an energy function. The main
contribution of this paper is that the interpretation of our proposed strategy has been given
based on a geometric framework. This approach continues the research originally presented
in [8, 9].

This paper is organized as follows. In Section 2, we consider a model of the relative rigid
body motion using the homogeneous representation and the adjoint transformation. Section
3 shows a nonlinear observer which estimates the relative rigid body motion. Stability and
L2-gain performance analysis for the visual feedback system are derived in Section 4. Finally,
we offer some conclusions in Section 5.

Let a rotation matrix eξ̂θab ∈ R3×3 represent the change of the principle axes of a frame b
relative to a frame a. ξab ∈ R3 specifies the direction of rotation and θab ∈ R is the angle of
rotation. Here ξ̂θab denotes ξ̂abθab for simplicity of notation. The operator ‘∧’ (wedge) will
be defined later. Then, eξ̂θab is known to become orthogonal with unit determinant. Such a
matrix belongs to a Lie group of dimension three, called SO(3) = {eξ̂θab ∈ R3×3|eξ̂θabe−ξ̂θab =

e−ξ̂θabeξ̂θab = I, det(eξ̂θab) = +1}. The configuration space of the rigid body motion is the
product space of R3 with SO(3), which should be denoted as SE(3) throughout this paper
(see, e.g. [10]). We use the 4× 4 matrix

gab =

[
eξ̂θab pab

0 1

]

as the homogeneous representation of gab = (pab, e
ξ̂θab) ∈ SE(3).

2 Relative Rigid Body Motion Model

We consider the eye-in-hand system [1] depicted in Fig. 1, where the coordinate frame Σw

represents the world frame, Σc represents the camera (end-effector) frame, and Σo represents

the object frame, respectively. Let pco ∈ R3 and eξ̂θco ∈ R3×3 denote the position vector and
the rotation matrix from the camera frame Σc to the object frame Σo. Then, the relative
rigid body motion from Σc to Σo can be represented by gco = (pco, e

ξ̂θco) ∈ SE(3). Similarly,

we will define the rigid body motion gwc = (pwc, e
ξ̂θwc) from Σw to Σc, and gwo = (pwo, e

ξ̂θwo)
from Σw to Σo, respectively, as in Fig. 1.

The objective of the visual feedback control is to bring the actual relative rigid body motion



gco = (pco, e
ξ̂θco) to a given reference gd = (pd, e

ξ̂θd) (see, e.g. [1]). Our goal is to determine

the camera’s motion via the visual information for this purpose. The reference gd = (pd, e
ξ̂θd)

for the rigid motion gco = (pco, e
ξ̂θco) is assumed to be constant in the paper.

In this subsection, let us derive a model of the relative rigid body motion. The rigid body
motion gwo = (pwo, e

ξ̂θwo) of the target object, relative to the world frame Σw, is given by

gwo = gwcgco (1)

which is a direct consequence of a transformation of the coordinates in Fig. 1. These
coordinate transformations can be found in [10] (Chap. 2, eq. (2.24)). Using the notation
g−1

ab as inverse of gab, the rigid motion (1) can be rewritten as

gco = g−1
wc gwo (2)

where g−1
ab is determined by straightforward matrix inversion to be

g−1
ab =

[
e−ξ̂θab −e−ξ̂θabpab

0 1

]
∈ SE(3).

The dynamic model of the relative rigid body motion involves the velocity of each rigid
body. To this aid, let us consider the velocity of a rigid body as described in [10]. Now, let
us denote the body velocity of the camera relative to the world frame Σw as

V̂ b
wc := g−1

wc ġwc =

[
ω̂wc vwc

0 0

]
∈ R4×4, V b

wc =

[
vwc

ωwc

]
∈ R6. (3)

where vwc and ωwc denotes the velocity of the origin and the instantaneous body angular
velocities from Σw to Σc, respectively([10] Chap. 2, eq. (2.49)). Here the operator ‘∧’
(wedge), from R3 to the set of 3× 3 skew-symmetric matrices so(3), is defined as

â = (a)∧ :=


 0 −a3 a2

a3 0 −a1
−a2 a1 0


 , a =


 a1
a2
a3


 .

The operator ‘∨’ (vee) denotes the inverse operator to ‘∧’: i.e., so(3) → R3. Recall that a
skew-symmetric matrix corresponds to an axis of rotation (via the mapping a �→ â).

Further, the body velocity of the target object relative to Σw should be represented as

V̂ b
wo := g−1

wo ġwo =

[
ω̂wo vwo

0 0

]
∈ R4×4, V b

wo =

[
vwo

ωwo

]
∈ R6 (4)

where vwo and ωwo denotes the velocity of the origin and the instantaneous body angular
velocities from Σw to Σo, respectively.

Differentiating (2) with respect to time, we have

ġ = ġ−1
wc gwo + g−1

wc ġwo = −g−1
wc ġwcg

−1
wc gwo + g−1

wc gwog
−1
wo ġwo. (5)

By substituting (3) and (4) into the above equation, we can obtain

ġ = −V̂ b
wcg + gV̂ b

wo (6)



Here g = (p, eξ̂θ) denotes gco = (pco, e
ξ̂θco) for short. We multiply (6) by g−1 from left side

to obtain

g−1ġ = −g−1V̂ b
wcg + V̂ b

wo. (7)

In order to derive the model of relative rigid body motion, the adjoint transformation[10]
can be introduced. The adjoint transformation associated with gab, written Adgab

, is given
as

Adgab
=

[
eξ̂θab p̂abe

ξ̂θab

0 eξ̂θab

]
. (8)

The following property concerning the adjoint transformation is important for the rigid
body motion. If V̂ ′ = gabV̂ g

−1
ab , then

V ′ = Adgab
V (9)

holds([10], Chap. 2, pp. 60, eq. (2.64)). Using the above property, eq. (7) can be rewritten
as

V b = −Ad(g−1)V
b

wc + V b
wo. (10)

Eq. (10) should be the model of the relative rigid body motion(RRBM). Fig. 2 shows the
block diagram of relative rigid body motion.
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Figure 2: Block diagram of relative rigid body motion.

Next, we derive a model of a pinhole camera as shown in Fig. 3. Let λ be a focal length,
poi ∈ R3 and pci ∈ R3 be coordinates of the target object’s i-th feature point relative to Σo

and Σc, respectively. Using a transformation of the coordinates, we have

pci = gpoi, (11)

where pci and poi should be regarded as [p
T
ci 1]

T and [pT
oi 1]

T , respectively. These representa-
tions, i.e. a point vector is appended 1, are called the homogeneous coordinates of the point
pab. In case of using the homogeneous transformation, we will treat pab as [p

T
ab 1]

T without
confusion.

The perspective projection of the i-th feature point onto the image plane gives us the image
plane coordinate fi as follows.

fi =
λ

zci

[
xci

yci

]
(12)

where pci := [xci yci zci]
T . It is straightforward to extend this model to the m image points

case by simply stacking the vectors of the image plane coordinate, i.e. f := [fT
1 · · · fT

m]
T ∈
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Figure 3: Pinhole camera
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Figure 4: Block diagram of camera model with RRBM.

R2m. Fig. 4 depicts a block diagram of the camera model with the relative rigid body
motion. Unfortunately the relative rigid body motion g can not be obtained directly in
the visual feedback system, the visual information f which includes the relative rigid body
motion can be exploited.

3 Nonlinear Observer

The visual feedback control task should require information of the relative rigid body motion
g. Since the measurable information is only the image information in the visual feedback
systems, we consider a nonlinear observer in order to estimate the relative rigid body motion
from the image information.

First, we shall consider the following dynamic model which just comes from the actual
relative rigid body motion model (10).

V̄ b = −Ad(ḡ−1)V
b
wc + ue (13)

where ḡ = (p̄, e
ˆ̄ξθ̄) and V̄ b are the estimated value of the relative rigid body motion and

the estimated body velocity, respectively. The new input ue is to be determined in order to
converge the estimated value to the actual relative rigid body motion. Because the design
of ue needs a property of the whole visual feedback system, we will propose ue in Section 4

Similarly to (11) and (12), the estimated image feature point f̄i (i = 1, · · · , m) should be



described as

p̄ci = ḡpoi (14)

f̄i =
λ

z̄ci

[
x̄ci

ȳci

]
(15)

where p̄ci := [x̄ci ȳci z̄ci]
T . f̄ := [fT

1 · · · fT
m]

T ∈ R2m means the m image points case. Fig. 5
shows a block diagram of the model of the estimated relative rigid body motion.
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Figure 5: Block diagram of estimated model.

Now, we define the estimation error between the estimated value ḡ and the actual relative
rigid motion g as

gee = ḡ−1g, (16)

in other words, pee = e−
ˆ̄ξθ̄(p − p̄) and eξ̂θee = e−

ˆ̄ξθ̄eξ̂θ. Note that p = p̄ and eξ̂θ = e−
ˆ̄ξθ̄ iff

g = I , i.e. pee = 0 and e
ξ̂θee = I . Let the matrix sk(eξ̂θ) denote 1

2
(eξ̂θ − e−ξ̂θ) and let

eR(e
ξ̂θ) := sk(eξ̂θ)∨ (17)

represent an error vector of the rotation matrix eξ̂θ. Using the notation eR(e
ξ̂θ) defined in

the above eq. (17), the vector of the estimation error is given by

ee :=
[
pT

ee eT
R(e

ξ̂θee)
]T

. (18)

Note that ee = 0 iff pee = 0 and e
ξ̂θee = I .

Next, we will derive an estimation error system. Differentiating (16) with respect to time,
we can obtain

ġee = −(−ḡ−1V̂ b
wcḡ + ûe)gee + gee(−g−1V̂ b

wcg + V̂ b
wo) (19)

where detailed derivation can be found in Appendix A. We multiply both sides of (19) by
g−1

ee to obtain

g−1
ee ġee = −g−1

ee (−ḡ−1V̂ b
wcḡ + ûe)gee + (−g−1V̂ b

wcg + V̂ b
wo)

= −g−1
ee ûegee + V̂ b

wo. (20)

Furthermore, using the property concerning the adjoint transformation described in (9), the
above equation can be transformed into the following

V b
ee = −Ad(g−1

ee )ue + V b
wo. (21)

Eq. (21) represents the model of the estimation error system. Then the following lemma
can be obtained.



Lemma 1 If the target object is static, i.e. V b
wo = 0, then the following inequality holds for

the system (21).

∫ T

0

uT
e (−ee)dτ ≥ −γ2e (22)

where γe is a positive scalar.

(Proof:) Consider the positive definite function defined as

Ve =
1

2
‖pee‖2 + φ(eξ̂θee) (23)

where φ is the error function of the rotation matrix and introduced in [12]. We refer to
Appendix B for this error function on SO(3).

From the property of ‘∧’ (wedge), i.e. ‘∧’ is the cross product operator and â is a 3 × 3
skew-symmetric matrix, we have pT

eep̂eeωue = −pT
eeω̂uepee = 0. Using this fact and evaluating

the time derivative of Ve gives us

V̇e = pT
eee

ξ̂θeee−ξ̂θee ṗee + eT
R(e

ξ̂θee)eξ̂θeeωee

= eT
eAd(eξ̂θee)V

b
ee = −eT

eAd(eξ̂θee)Ad(g−1
ee )ue

= −eT
eAd(−pee)ue = uT

e (−ee) (24)

Integrating (24) from 0 to T yields

∫ T

0

uT
e (−ee)dτ = Ve(T )− Ve(0) ≥ −γ2e (25)

This completes the proof. ✷

Remark 1 In the estimation error system (9), pT
eeω̂uepee = 0 holds. This property is analo-

gous to the one of the robot dynamics, i.e. xT (Ṁ − 2C)x = 0, ∀x ∈ Rn (where M ∈ Rn×n

is the manipulator inertia matrix and C ∈ Rn×n is the Coriolis matrix [10]). Moreover, let
us take ue as the input and ee as its output. Then, Lemma 1 would suggest that the system
(9) is passive from the input ue to the output −ee just formally as in the definition in [11].

Next, we will derive a relation between the actual image information and the estimated one.
Suppose the estimation error is small enough that we can let eξ̂θee � I + sk(eξ̂θee), then the
following relation between the actual feature point pci and the estimated one p̄ci holds.

pci − p̄ci =
[
I −(e ˆ̄ξθ̄poi)

∧
] [

e
ˆ̄ξθ̄ 0

0 e
ˆ̄ξθ̄

][
pee

eR(e
ξ̂θee)

]
(26)

where the above equation has been described in more detail in Appendix C.

Using Taylor expansion with the first order approximation, the relation between the actual
image information and the estimated one can be derived as

fi − f̄i =

[
λ

z̄ci
0 −λx̄ci

z̄2
ci

0 λ
z̄ci

−λȳci

z̄2
ci

]
(pci − p̄ci). (27)



From the above equation, the relation between the actual image information and the esti-
mated one can be given by

f − f̄ = J(ḡ)ee, (28)

where J(ḡ) : SE(3)→ R2m×6 is defined as

J(ḡ) :=




J1(ḡ)
J2(ḡ)
...

Jm(ḡ)




[
e
ˆ̄ξθ̄ 0

0 e
ˆ̄ξθ̄

]
(29)

Ji(ḡ) :=

[
λ
z̄ci

0 −λx̄ci

z̄2
ci

0 λ
z̄ci

−λȳci

z̄2
ci

] [
I −(e ˆ̄ξθ̄p̂oi)

∧
]
, i = 1, · · · , m. (30)

Note that the matrix J(p̄, e
ˆ̄ξθ̄) is like as the image Jacobian which plays an important role

in many researches of the visual feedback control [1]. We assume that the matrix J(ḡ) is
full column rank for all ḡ ∈ SE(3). Then, the relative rigid body motion can be uniquely
defined by the image feature vector. Because this may not hold in some cases when n = 3,
it is known that n ≥ 4 is desirable for the full column rank of the image Jacobian [13].
The above discussion shows that we can derive the vector of the estimation error ee from

image information f and the estimated value of the relative rigid body motion (p̄, e
ˆ̄ξθ̄),

ee = J †(ḡ)(f − f̄ ) (31)

where † denotes the pseudo-inverse. Therefore the estimation error ee can be exploited in
the 3D visual feedback control law using image information f obtained from the camera.
Fig. 6 shows the block diagram of estimation error system.
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Figure 6: Block diagram of estimation error system.



4 Visual Feedback Control

4.1 Model of Visual Feedback System

In this paper, we rigorously discuss stability and control performance analysis of the visual
feedback system with the nonlinear observer. Let us derive a model of the visual feedback
system. First, we define the control error as follows.

gec = g−1
d ḡ, (32)

which represents the error between the estimated value ḡ and the reference of the relative

rigid body motion gd. It should be remarked that pd = p̄ and eξ̂θd = e
ˆ̄ξθ̄ iff gec = I . Using

the notation eR(e
ξ̂θ), the vector of the control error is defined as

ec :=
[
pT

ec eT
R(e

ξ̂θec)
]T

. (33)

Note that ec = 0 iff pec = 0 and e
ξ̂θec = I .

Similarly to (21), the model of the control error can be obtained as

V b
ec = −Ad(ḡ−1)V

b
wc + ue. (34)

Using (21) and (34), the visual feedback system can be derived as[
V b

ec

V b
ee

]
=

[ −Ad(ḡ−1) I
0 −Ad(g−1

ee )

]
uce +

[
0
I

]
V b

wo (35)

where

uce :=
[
uT

c uT
e

]T
(36)

denotes the control input. Since the camera velocity V b
wc is considered as an input, the

notation uc will be used instead of V
b
wc. Let us define the error vector of the visual feedback

system as

e :=
[
eT

c eT
e

]T
(37)

which contains of the control error vector ec and the estimation error vector ee. It should
be noted that the actual relative rigid body motion g tends to the reference gd when e → 0.

4.2 Visual Feedback Control and Stability Analysis

Before deriving the visual feedback control law, we show an important lemma.

Lemma 2 If V b
wo = 0, then the visual feedback system (35) satisfies∫ T

0

uT
ceνdτ ≥ −γce, ∀T > 0 (38)

where ν is

ν :=

[
−AdT

(g−1
d )

0

Ad
(e−ξ̂θec)

−I

]
e. (39)



(Proof:) Consider the following positive definite function

V =
1

2
‖pec‖2 + φ(eξ̂θec) +

1

2
‖pee‖2 + φ(eξ̂θee) (40)

which utilizes the error function φ. The positive definiteness of the function V can be given
by the property of the error function φ. Differentiating (40) with respect to time yields

V̇ = pT
ece

ξ̂θece−ξ̂θec ṗec + eT
R(e

ξ̂θec)eξ̂θecωec + pT
eee

ξ̂θeee−ξ̂θee ṗee + eT
R(e

ξ̂θee)eξ̂θeeωee

=
[
pT

ec eT
R(e

ξ̂θec) pT
ee eT

R(e
ξ̂θee)

][
Ad(eξ̂θec) 0

0 Ad(eξ̂θee )

][
V b

ec

V b
ee

]
. (41)

Observing that the skew-symmetry of the matrices p̂ec and p̂ee, i.e. p
T
ecp̂ecωwc = −pT

ecω̂wcpec =
0 and pT

eep̂eeωwc = −pT
eeω̂wcpee = 0, the above equation along the trajectories of the system

(35) can be transformed into

V̇ = eT

[
Ad(eξ̂θec) 0

0 Ad
(eξ̂θee)

][ −Ad(ḡ−1) I
0 −Ad(g−1

ee )

]
uce

= eT

[ −Ad
(e−ξ̂θd)

Ad(−p̄) Ad(eξ̂θec)

0 −Ad(−pee)

]
uce

= eT

[ −Ad
(e−ξ̂θd)

Ad
(−eξ̂θdpec−pd)

Ad(eξ̂θec)

0 −I
]
uce

= eT

[ −Ad(g−1
d ) Ad(eξ̂θec)

0 −I
]
uce = uT

ceν (42)

Integrating (42) from 0 to T , we can obtain∫ T

0

uT
ceνdτ = V (T )− V (0) ≥ −γce. (43)

This completes the proof. ✷

The block diagram of the visual feedback system is shown in Fig. 7. It is well known
that there is a direct link between passivity and Lyapunov stability. Thus, we propose the
following control input.

uce = −
[
Kc 0
0 Ke

]
ν (44)

whereKc andKe are 6×6 positive definite matrices called the control gain and the estimation
gain, respectively. The result with respect to exponential stability of the proposed control
input (44) can be established as follows.

Theorem 1 If Vwo = 0 and the initial state e(0) belongs to {e|V (e(0)) < 1}, then the
equilibrium point e = 0 for the closed-loop system (35) and (44) is exponentially stable.

(Proof:) In the proof of Lemma 2, we have already derived that the time derivative of V
along the trajectory of the system (35) is formulated as (42). Using the control input (44),
eq. (42) can be transformed into

V̇ = −eTKe ≤ −βk‖e‖2 (45)
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Figure 7: Block diagram of the visual feedback system

where K is defined as

K :=

[
Ad(g−1

d ) −Ad(eξ̂θec)

0 I

][
Kc 0
0 Ke

] [
AdT

(g−1
d )

0

−Ad
(e−ξ̂θec)

I

]
.

Because K is a positive definite matrix and eξ̂θec ∈ SO(3), there exists a bounded positive
scalar βk which does not depend on the state e. βk is given by

βk = σmax(K) (46)

where σmax denotes the maximum singular value. Since V is a non-increasing function and
V (0) < 1, the function V (t) verifies

β2‖e‖2 ≤ V (t) ≤ β1‖e‖2 (47)

for some bounded constants β1 ≥ β2 > 0. From (45) and (47), we have

V̇

V
≤ −βk‖e‖2

β1‖e‖2 := −ζ (48)

where ζ > 0 is a bounded constant. Integrating both sides of (48) yields

ln
V (t)

V (0)
≤ −ζt (49)

which leads to the inequality

V (t) ≤ V (0)e−ζt. (50)

This completes the proof. ✷

Remark 2 Lemma 2 can be interpreted as follows: The visual feedback system (35) is
passive from the input u to the output ν just formally as in the definition in [11].



4.3 L2-Gain Performance Analysis

In this section, we consider L2-gain performance analysis of the visual feedback system.
Now, let us define

P := K − 1
2

[
I 0

0
(
1 + 1

γ2

)
I

]
(51)

where γ ∈ R is positive. Then we have the following theorem.

Theorem 2 Given a positive scalar γ and consider the control input (44) with the gains
Kc and Ke such that the matrix P is positive semi-definite, then the closed-loop system (35)
and (44) has L2-gain ≤ γ.

(Proof:) Differentiating the positive definite function V defined in (40) along the trajectory
of the closed-loop system and completing the squares yields

V̇ = −eTKe+ eT
e Ad(eξ̂θee)V

b
wo

=
γ2

2
‖V b

wo‖2 −
1

2
‖e‖2 − γ2

2

∥∥∥V b
wo −

1

γ2
Ad

(eξ̂θee )
ee

∥∥∥2

−eTKe+
1

2γ2
eT

[
0 0
0 I

]
e+

1

2
‖e‖2. (52)

Then the velocity of the target object (in the worst case) should be derived as

V b
wo =

1

γ2
Ad(eξ̂θee)ee. (53)

Hence for any V b
wo it can be verified that the inequality

V̇ +
1

2
‖e‖2 − γ2

2
‖V b

wo‖2 ≤ −eTPe ≤ 0 (54)

holds if P is positive semi-definite. Integrating (54) from 0 to T and noticing V (T ) ≥ 0, we
have ∫ T

0

‖e‖2dt ≤ γ2
∫ T

0

‖V b
wo‖2dt+ 2V (0), ∀T > 0. (55)

This completes the proof. ✷

The positive definite function V plays the role of the storage function for L2-gain perfor-
mance analysis.

5 Conclusions

This paper investigates the rigid body motion (involving both translation and rotation)
control problem of vision-based robotic systems. The main contribution of this paper is that
the interpretation of our proposed strategy has been given based on a geometric framework.
By using the homogeneous representation and the adjoint transformation, we have derived
the relative rigid body motion dynamics between the moving target object and the camera.
The nonlinear observer has been proposed in order to derive the visual feedback system.



Stability and L2-gain performance analysis for the full 3-D visual feedback system have been
discussed based on passivity with the energy function.
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Appendix

A Model of Estimation Error System

We shall derive the model of the estimation error system presented in Section 3. The
property of the adjoin transformation, i.e. gg−1 = I , gives us

ġee = ˙̄g
−1g + ḡ−1ġ = −ḡ−1 ˙̄gḡ−1g + ḡ−1gg−1ġ

= −ḡ−1 ˙̄ggee + geeg
−1ġ. (56)

Using the property concerning the adjoint transformation (8), the estimated relative rigid
body motion (13) can be transformed into

ˆ̄V b = ḡ−1ġ = −(ḡ−1)V̂ b
wcḡ + ûe. (57)

By substituting (7) and (57) into (56), we can obtain

ġee = −(−ḡ−1V̂ b
wcḡ + ûe)gee + gee(−g−1V̂ b

wcg + V̂ b
wo). (58)



B Error Function on SO(3)

Let us introduce the notation of the error function.

φ(eξ̂θ) :=
1

2
tr(I − eξ̂θ), (59)

and, for any 3 × 3 matrix A, sk(A) := 1
2
(A− AT ). The error function φ has the following

properties.
Property 1 Let eξ̂θ ∈ SO(3). The following properties hold.

1. φ(eξ̂θ) = φ(e−ξ̂θ) ≥ 0 and φ(eξ̂θ) = 0 if and only if eξ̂θ = I .

2. φ̇(eξ̂θ) = eT
R(e

ξ̂θ)ω = eT
R(e

ξ̂θ)eξ̂θω, where eR(e
ξ̂θ) := sk(eξ̂θ)∨.

These properties are proved in [12].

C Relation between Feature Point and Estimated one

The relation between the feature point and the estimated one will be derived. The feature
point can be rewritten as

pci − p̄ci = (p− p̄) + (eξ̂θ − e
ˆ̄ξθ̄)poi

= e
ˆ̄ξθ̄pee + e

ˆ̄ξθ̄(e−
ˆ̄ξθ̄eξ̂θ − I)poi. (60)

Suppose the estimation error is small enough that we can let eξ̂θee � I + sk(eξ̂θee) (which is
derived from Rodrigues’ formula in [10]), then the equation (60) becomes

pci − p̄ci = e
ˆ̄ξθ̄pee + e

ˆ̄ξθ̄sk(eξ̂θee)poi = e
ˆ̄ξθ̄pee + (e

ˆ̄ξθ̄sk(eξ̂θee)e−
ˆ̄ξθ̄)e

ˆ̄ξθ̄poi

= e
ˆ̄ξθ̄pee + (e

ˆ̄ξθ̄sk(eξ̂θee)∨)∧e
ˆ̄ξθ̄poi. (61)

It should be noted that âb = −b̂a, ∀a, b ∈ R3 and eR(e
ξ̂θ) = sk(eξ̂θ)∨, ∀eξ̂θ ∈ SO(3) hold,

then we have

pci − p̄ci = e
ˆ̄ξθ̄pee − (e ˆ̄ξθ̄poi)

∧(e
ˆ̄ξθ̄eR(e

ξ̂θee))

=
[
I −(e ˆ̄ξθ̄poi)

∧
] [

e
ˆ̄ξθ̄ 0

0 e
ˆ̄ξθ̄

][
pee

eR(e
ξ̂θee)

]
(62)

Hence, (26) holds.
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