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Abstract. This paper investigates a vision-based robot motion control using position mea-

surements and visual information. Firstly the model of relative rigid body motion (positions

and rotations) and the method for estimation of the relative rigid body motion are presented

in order to derive the visual feedback system. Next, we consider the velocity observer and

derive the dynamic visual feedback system which contains the manipulator dynamics. Finally

the main results with respect to stability and L2-gain performance analysis for the proposed

dynamic visual feedback control are discussed.

1 Introduction

Vision-based control of robotic systems involves the fusion of robot kinematics, dynamics,
and computer vision system to control the position of the robot end-e�ector in an eÆcient
manner [1]. The combination of mechanical control with visual information, so-called
visual feedback control or visual servoing, should become extremely important, when a
mechanical system is operating in an unstructured environment. In this approach, the
control objective is to track the target object in a three-dimensional workspace by using
image information. An interesting historical review of the visual servoing can be found
in [1].

This paper deals with a robot motion control with visual information in the eye-in-
hand con�guration as depicted in Figure 1. Classical visual servoing algorithms assume
that the manipulator dynamics is negligible and do not interact with the visual feedback
loop [2][3]. This assumption is invalid for high speed tasks, while it holds for kinematic
control problems. Kelly et al: [4] have considered a simple image-based controller which
guaranteed local asymptotic stability under an assumption that objects' depths are known.
In recent papers [5][6], the authors have proposed the 3-D visual feedback control which
has guaranteed local asymptotic stability without the known objects' depths from the
theoretical standpoint. While several researches [8][9] have pointed out a problem of
global stability, local asymptotic stability is very important in case of the image feature
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points exist in the neighborhood of the equilibrium point. However, performance measures
for the visual feedback systems have not been obtained in the previous works. Since one
of the control objective is to track the moving target object, the tracking performance
measures are important for the visual feedback systems. In the area of vision and control,
it has been expected to investigate not only stability but performance analyses based on
theoretical approaches.

Camera

Σc

Σo

Σw
Target Object

= (p, R)

(pwo, Rwo)

(pwc, Rwc)
Image

(pco, Rco)

Figure 1: Eye-in-hand visual feedback system.

In this paper, we propose the vision-based control of robots using position measure-
ments only and discuss stability and L2-gain performance analysis for the visual feedback
system from the theoretical standpoint. The key idea of our proposed method is based
on a structural passivity-like property of the visual feedback system. Our previous re-
search [6] has proposed state feedback control which guaranteed local stability and L2-gain
performance analysis. This work is a continuation of our previous researches [5]{[7].

This paper is organized as follows. In Section 2, we consider a model of the relative
rigid body motion. Section 3 presents a method for the estimation of the relative rigid
body motion and leads the visual feedback system. Stability and L2-gain performance
analysis for the visual feedback system considering the proposed velocity observer are
discussed in Section 4. Finally, we o�er some conclusions in Section 5.

Throughout thie paper, Am and AM represent the minimum and maximum eigenvalue
of A(x), respectively. The norm of a vector x and a matrix A are de�ned as kxk =

p
xTx

and kAk =
p
�max(ATA), respectively. �max denotes the maximum eigenvalue.

2 Relative Rigid Body Motion

Let us consider the eye-in-hand system [1] depicted in Figure 1, where the coordinate
frame �w represents the world frame, �c represents the camera (end-e�ector) frame, and
�o represents the object frame, respectively. Let pco 2 R3 and Rco 2 R3�3 denote
the position vector and the rotation matrix from the camera frame �c to the object
frame �o. Then, the relative rigid body motion from �c to �o can be represented by
(pco; Rco) 2 SE(3). Similarly, we will de�ne the rigid body motion (pwc; Rwc) from �w to
�c, and (pwo; Rwo) from �w to �o, respectively, as in Figure 1.

The objective of the visual feedback control is to bring the actual relative rigid body
motion (pco; Rco) to a given reference (pd; Rd) (see, e.g. [1]). The reference (pd; Rd) for
the rigid motion (pco; Rco) is assumed to be constant in this paper.
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In this section, let us derive a model of the relative rigid body motion. The rigid body
motion (pwo; Rwo) of the target object, relative to the world frame �w, is given by

pwo = pwc +Rwcpco (1)

Rwo = RwcRco (2)

which is a direct consequence of a transformation of the coordinates [11] in Figure 1.
Using the property of a rotation matrix, i.e. R�1 = RT , the rigid body motion (1) and
(2) is now rewritten as

pco = RT
wc(pwo � pwc) (3)

Rco = RT
wcRwo: (4)

The dynamic model of the relative rigid body motion involves the velocity of each
rigid body. To this aid, let us consider the velocity of a rigid body [11]. Let !̂wc and
!̂wo denote the instantaneous body angular velocities from �w to �c, and from �w to �o,
respectively. Here the operator `^' (wedge), from R3 to the set of 3� 3 skew-symmetric
matrices so(3), is de�ned as

â = (a)^ :=

2
4 0 �a3 a2

a3 0 �a1
�a2 a1 0

3
5 ; a =

2
4 a1
a2
a3

3
5 :

The operator `_' (vee) denotes the inverse operator to `^': i.e. so(3)! R3. With these,
it is possible to specify the velocities of each rigid body as follows [11](Chap.2, (2.55)).

_pwc = Rwcvwc; _Rwc = Rwc!̂wc (5)

_pwo = Rwovwo; _Rwo = Rwo!̂wo: (6)

Di�erentiating (3) and (4) with respect to time, we can obtain

_pco = �vwc + p̂co!wc +Rcovwo (7)
_Rco = �!̂wcRco +Rco!̂wo: (8)

Now, let us denote the body velocity of the camera relative to the world frame �w as
Vwc := [vTwc !

T
wc]

T . Further, the body velocity of the target object relative to �w should
be denoted as Vwo := [vTwo !T

wo]
T .

Then we can rearrange (7) and (8) in a matrix form as follows
(Relative Rigid Body Motion : RRBM)

�
_p

( _RRT )_

�
=

��I p̂

0 �I
�
Vwc +

�
R 0
0 R

�
Vwo: (9)

Here (p; R) denotes (pco; Rco) for short. Equation (9) should be the model of the relative
rigid body motion [5].
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3 Visual Feedback System

3.1 Estimation of Relative Rigid Body Motion

The visual feedback control task should require the information of the relative rigid body
motion (p; R). However, the available information that can be measured in the visual
feedback systems is only image information. Hence, let us consider a nonlinear observer
which will estimate the relative rigid body motion via image information.

We shall consider the following dynamic model which just comes from the actual
relative rigid body motion (9).

�
_�p

( _�R �RT )_

�
=

� �I �̂p
0 �I

�
Vwc +

�
I 0
0 �R

�
ue (10)

where (�p; �R) is the estimated value of the relative rigid body motion, and a new input
ue for the estimation is to be determined in order to converge the estimated value to the
actual relative rigid body motion.

Σc

Camera

λ
pci

fi

Σw

Σo

Target Object

poi

Figure 2: Pinhole camera model.

Next let us derive a pinhole camera model as shown in Figure 2. Let � be a focal
length. Let poi and pci be coordinates of the target object's i-th feature point relative to
�o and �c, respectively. From a transformation of the coordinates, we have

pci = p+Rpoi: (11)

The perspective projection of the i-th feature point onto the image plane gives us the
image plane coordinate as follows

fi =
�

zci

�
xci
yci

�
(12)

where pci := [xci yci zci]
T . It is straightforward to extend this model to the n feature points

case by simply stacking the vectors of the image plane coordinate, i.e. f := [fT
1
� � � fTn ]T =

�(p; R) 2 R2n.
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Now, we de�ne the estimation error between the estimated value (�p; �R) and the actual
relative rigid motion (p; R) as

(pee; Ree) := (p� �p; �RTR): (13)

Note that, if p = �p and R = �R, then it follows pee = 0 and Ree = I. Let the matrix sk(R)
denote 1

2
(R � RT ) and let eR(R) := sk(R)_ represent the error vector of the rotation

matrix R. Then the vector of the estimation error is given by ee := [pTee e
T
R(Ree)]

T . Note
that ee = 0 holds when pee = 0 and Ree = I.

Next, we will derive the measurement equation from (11) and (12). Suppose the
estimation error is small enough that we can let Ree ' I + sk(Ree), then (11) becomes

pci = �pci � �Rp̂oieR(Ree) + pee (14)

where �pci := �p + �Rpoi. Using Taylor expansion, (12) can be written as

fi = �fi +

"
�
�zci

0 ���xci
�z2
ci

0 �
�zci

���yci
�z2
ci

#
(pci � �pci) (15)

where �pci = [�xci �yci �zci]
T and �fi :=

�
�zci
[�xci �yci]

T .

An approximation of image information around the estimated value (�p; �R) is given by

f � �f = J(�p; �R)ee (16)

where the matrix J(�p; �R) is de�ned as

J(�p; �R) :=

2
6664

L(�p; �R; po1)
L(�p; �R; po2)

...
L(�p; �R; pon)

3
7775 ; L(�p; �R; poi) :=

"
�
�zci

0 ���xci
�z2
ci

0 �
�zci

���yci
�z2
ci

# �
I � �Rp̂oi

�
: (17)

Note that the matrix J(�p; �R) can be interpreted as the image Jacobian. It is known that
the appropriate pseudo-inverse of the image Jacobian exists in case of n � 4 [1].

We consider the state equation of the estimated relative rigid body motion error. Using
(9), (10) and (13), the state equation of the estimated RRBM error can be obtained as
follows. �

_pee
( _ReeR

T
ee)

_

�
=

�
0 p̂ee
0 0

�
Vwc � ue +R2Vwo (18)

where R2 = diagfR;Reeg.

3.2 Visual Feedback System

Let us derive a model of the visual feedback system. First, we de�ne the relative rigid
body motion error which represents the error between the estimated value (�p; �R) and the
reference of the relative rigid body motion (pd; Rd) as follows.

(pec; Rec) := (�p� pd; �RR
T
d ) (19)
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It should be remarked that pd = �p and Rd = �R i� pec = 0 and Rec = I. Using the
notation eR(R), the vector of the RRBM error is de�ned as ec := [pTec e

T
R(Rec)]

T . Note
that ec = 0 i� pec = 0 and Rec = I.

From (10) and (19), the state equation of the RRBM error can be given by

�
_pec

( _RecR
T
ec)

_

�
= �BT (�p)uc +R1ue; B(a) :=

�
I 0
â I

�
8a 2 R3 (20)

where R1 = diagfI; �Rg. Since the camera velocity Vwc is considered as an input, the
notation uc is used instead of Vwc.

Using (18) and (20), the state equation of the visual feedback system can be derived as

2
664

_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775 =

2
664
�I �̂p I 0
0 �I 0 �R
0 p̂ee �I 0
0 0 0 �I

3
775 ur +

�
0
R2

�
Vwo (21)

where ur := [uTc uTe ]
T denotes the input of the visual feedback system.

Let us de�ne the error vector of the visual feedback system as e := [eTc eTe ]
T which

consists of the RRBM error vector ec and the estimated RRBM error vector ee. It should
be noted that the actual relative rigid body motion (p; R) tends to the reference (pd; Rd)
when e ! 0.

The following control input has been proposed in [5].

ur = �
�
Kc 0
0 Ke

� � �B(pd) 0
RT

1
�I

�
e (22)

where Kc and Ke are 6� 6 positive de�nite matrices. Stability and L2-gain performance
analysis for the visual feedback system have been discussed in [5]. Figure 3 shows a block
diagram of the visual feedback system.
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Figure 3: Block diagram of the visual feedback system.
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4 Vision-based Robot Control

4.1 Visual Feedback System with Manipulator Dynamics

The manipulator dynamics can be written as

M(q)�q + C(q; _q) _q + g(q) = � (23)

where q, _q and �q are the joint angles, velocities and accelerations, respectively. � is the
vector of the input torques.

Since the camera is mounted on the end-e�ector of the manipulator in the eye-in-hand
con�guration, the body velocity of the camera Vwc is given by Vwc = Jb(q) _q. Jb(q) is the
manipulator body Jacobian [11]. We assume that the manipulator Jacobian Jb(q) is the
nonsingular matrix. Under this assumption, we de�ne the reference of the joint velocities
as _qd := J�1b (q)uc. uc represents an ideal body velocity of the camera.

Let us de�ne the error vector with respect to the joint velocities of the manipulator
dynamics as s1 := _q � _qd. Now, we consider the velocity observer approach [10] in order
to estimate the joint velocities. Here we propose the control law as the input torques and
the velocity observer for the dynamic visual feedback system as follows.

Controller

�
� = M(q)�qd + C(q; _q0) _qd + g(q) + us
_q0 = _�q � �~q

(24)

Velocity
Observer

�
_�q = z + Ld~q
_z = �qd + Lp~q

(25)

where [�qT zT ]T is the observer state, _�q denotes the estimated velocities, � = �T > 0,
Ld = ldI + � > 0, Lp = ld� > 0, ld > 0 is scalar. The new input us is to be determined
in order to achieve the control objectives. Moreover, ~q is de�ned as ~q := q � �q which
represents the error between the actual joint angles and the estimated joint angles. Now
we assume that the desired velocities _qd are bounded by VM , i.e. VM = supt k _qd(t)k.

Here we consider the error dynamics of the manipulator. Substituting (24) into (23)
yields

M(q) _s1 = �C(q; _q)s1 � C(q; s2) _qd + us (26)

where s2 is de�ned as s2 := _q � _q0 = _~q + �~q.

The error dynamics of the velocity observer can be written as

M(q) _s2 = �M(q)lds2 + C(q; s2 � _q)s1 � C(q; _q)s2 + us: (27)

where �q0 � �qd = lds2 is used. Using (18), (20), (26) and (27), the visual feedback system
with manipulator dynamics (we call the dynamic visual feedback system) can be derived
as follows

M(q) _s1 = �C(q; _q)s1 � C(q; s2) _qd + us (28)

M(q) _s2 = �M(q)lds2 + C(q; s2 � _q)s1 � C(q; _q)s2 + us (29)2
664

_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775 =

2
664
�I �̂p
0 �I
0 p̂ee
0 0

3
775 Jb(q)s1 +

2
664
�I �̂p I 0
0 �I 0 �R
0 p̂ee�I 0
0 0 0 �I

3
775
�
uc
ue

�
+

�
0
R2

�
Vwo: (30)
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Equations (28) and (29) represent the manipulator dynamics with the velocity observer.
Equation (30) denotes the relative rigid body motion with the nonlinear observer. Figure 4
shows a block diagram of the visual feedback system with the manipulator dynamics.
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Figure 4: Block diagram of the dynamic visual feedback system.

4.2 Stability of Vision-based Robot Control

Let us de�ne the error vector of the dynamic visual feedback system as x :=
�
sT
1
sT
2
eTc eTe

�T
.

Then the dynamic visual feedback control problem can be formulated as follows.

Problem : Find a input vector u = [uTs uTc uTe ]
T such that the closed-loop system

satis�es the control objectives as follows:

(Internal stability) If the target object is static, i.e. Vwo = 0, then the equilibrium point
x = 0 for the closed-loop system is asymptotically stable.

(L2-gain performance analysis) The closed-loop system has L2-gain � 
.

We propose the following dynamic visual feedback control law

us = �Ks(s1 � s2)� JT
b (q)B(pd)ec (31)�

uc
ue

�
= �

�
Kc 0
0 Ke

� � �B(pd) 0
RT

1
�I

�
e (32)

where Ks, Kc and Ke are 6 � 6 positive de�nite matrices. Note that s1 and s2 cannot
be realized, whereas the di�erence s1 � s2 can be obtained from known signals, i.e.,
s1 � s2 = _�q � �~q � _qd.

Now, let us de�ne the following matrices.

Kce :=

�
BT (pd) �R1

0 I

� �
Kc 0
0 Ke

� �
B(pd) 0
�RT

1
I

�
(33)

KJ(q) := (JT
b (q)B(pd))

T (JT
b (q)B(pd)): (34)

The result with respect to asymptotic stability for the closed-loop system can be estab-
lished as follows.

Theorem 1 [7] Suppose that the following conditions hold.

Ks;m > CMVM ; ld > M�1

m (Ks;M +
1

2
+ CMVM); Kce;m >

1

2
KJ;M
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If Vwo = 0, then the equilibrium point x = 0 for the closed-loop system (28)-(32) is
asymptotically stable. Moreover, a region of attraction is given by

D1 =

�
x 2 R24

��� 2ldMm � 2Ks;M � 1

2CM

� VM > ks1k; Ks;m

CM

� VM > ks2k
�
: (35)

4.3 L2-Gain Performance Analysis

In case the target object is moving, we consider L2-gain performance analysis as a tracking
performance measure for the dynamic visual feedback system.

Theorem 2 Given a positive scalar 
 and suppose that the following conditions hold.

Ks;m > CMVM +
1

2
; ld > M�1

m (Ks;M + 1 + CMVM); Kce;m >
1

2

�
KJ;M + 1 +

1


2

�
(36)

Then the closed-loop system (28)-(32) has L2-gain � 
. Moreover, a region of attraction
is given by

D2 =

�
x 2 R24

��� ldMm �Ks;M � 1

CM

� VM > ks1k; 2Ks;m � 1

2CM

� VM > ks2k
�
: (37)

(proof) Consider the following positive de�nite function

V =
1

2
sT
1
M(q)s1 +

1

2
sT
2
M(q)s2 +

1

2
kpeck2 + �(Rec) +

1

2
kpeek2 + �(Ree): (38)

Di�erentiating the positive de�nite function V along the trajectory of the closed-loop
system and completing the squares yields

_V � 
2

2
kVwok2 � 
2

2



Vwo � 1


2

�
0 RT

2

�
e


2 + 1

2
2
eT
�
0 0
0 I

�
e� �

Kce;m � 1

2
KJ;M

�kek2
��Ks;m � CM(VM + ks2k)

�ks1k2 � �
ldMm �Ks;M � 1

2
� CM(VM + ks1k)

�ks2k2(39)
Hence for any Vwo it can be veri�ed that the inequality

_V +
1

2
kxk2 � 
2

2
kVwok2 � ��Ks;m � CM(VM + ks2k)� 1

2

�ks1k2
��ldMm �Ks;M � 1� CM(VM + ks1k)

�ks2k2
��Kce;m � 1

2
KJ;M � 1

2
� 1

2
2
�kek2 � 0 (40)

holds under the conditions (36). Integrating (40) from 0 to T and noticing V (x(T )) � 0,
we have Z T

0

kxk2dt � 
2
Z T

0

kVwok2dt+ 2V (x(0)); 8T > 0: (41)

This completes the proof.

L2-gain performance analysis can be regarded as a tracking performance measure for
the moving target object. The positive de�nite function V plays the role of the storage
function for L2-gain performance analysis.



10 M. Fujita and H. Kawai

5 Conclusions

This paper has presented the vision-based control of robots using position measurements
only. Stability and L2-gain performance analysis for the dynamic visual feedback system
have been discussed. Our proposed method has been based on the structural passivity-
like property of the visual feedback system. The nonlinear observer has been employed
in order to estimate the relative rigid body motion. Furthermore, we have proposed the
velocity observer with the aim of obtaining the joint velocities.

Our proposed passivity approach will enrich the �eld of visual servoing, although
there are some problems. In particular, motion planning based on optimal control for the
proposed framework is an important direction for our future work.
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