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受動性に基づく非線形視覚フィードバック制御
{ 安定性とL2ゲイン制御性能の解析*

丸山 　　章 y・河合 　宏之 z・藤田 　政之 x

Passivity-based Visual Feedback Control of Nonlinear

Mechanical Systems

{ Stability and L2-Gain Performance Analysis*

Akira Maruyama
y, Hiroyuki Kawaiz and Masayuki Fujitax

This paper investigates the relative rigid body motion (positions and rotations) control problem
with visual information. Firstly the model of the relative rigid body motion and the nonlinear
observer are considered in order to derive the visual feedback system. Secondly stability and L2-
gain performance analysis are discussed based on passivity. Finally we present simulation results to
con�rm the e�ectiveness of the proposed visual feedback control design.

1. Introduction

Vision based control of robotic systems involves
the fusion of robot kinematics, dynamics, and com-
puter vision system to control the position of the
robot end-e�ector in an eÆcient manner. The com-
bination of mechanical control with visual informa-
tion, so-called visual feedback control or visual servo,
should become extremely important, when we con-
sider a mechanical system working under dynamical

environments. Recent research e�orts toward this di-
rection have been nicely collected in Ref. [1,2].

This paper deals with the relative rigid body mo-
tion control of a moving target object with respect
to the camera frame. This control problem is stan-
dard and important, and has gained much attention
of researchers for many years [3{7]. The control objec-
tive is to track the moving target object in a three-
dimensional workspace by image information. The
typical example is shown in Fig. 1. Hence the dynam-
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ics of the relative rigid body motion is described by
the nonlinear systems in a 3-D workspace. Kelly et al.
[6] have considered a simple image-based controller for
the 3-D visual feedback system under the assumption
that the objects' depths are known. Their controller
has guaranteed that the overall closed-loop system
is stable by invoking the Lyapunov direct method.
Shakernia et al. [7] have derived the visual feedback
controller for an Unmanned Air Vehicle in the 3-D
workspace and shown a detailed stability analysis of
the closed-loop system. Several approaches have been
proposed to guarantee global stability [8{10]. In the
area of vision and control, it has been expected to in-
vestigate not only stability but analytical techniques
based on theoretical approaches [2]. Since one of the
control objective is to track the moving target ob-
ject, the tracking performance measure is important
for the 3-D visual feedback systems. However, perfor-
mance measures for the 3-D visual feedback systems
have not been obtained in the previous works.
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Fig. 1 Eye-in-Hand visual feedback system
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In this paper, we discuss stability and L2-gain
performance analysis for the full 3-D visual feedback
system based on passivity from the theoretical stand-
point. In order to derive the full 3-D visual feedback
system, we will consider a relative rigid body motion
dynamics and propose a nonlinear observer. The key
idea of this paper is to utilize an error function of the
rotation matrix as a Lyapunov or storage functions.
This approach continues the research originally pre-
sented in Ref. [11{13]. While the previous work have
investigated the image-based visual feedback control
of the planar motion types, this work deals with the
position-based visual feedback control for 3-D visual
feedback systems.

This paper is organized as follows. In Section 2,
we consider a model of the relative rigid body motion.
Section 3 shows a nonlinear observer which estimates
the relative rigid body motion. The main theorem
concerned with stability is derived in Section 4, and
L2-gain performance analysis is discussed in Section
5. In Section 6, we present the simulation results.
Finally, we o�er some conclusions in Section 7.

Let a rotation matrix Rab 2R
3�3 represent the

change of the principle axes of a frame b relative to a
frame a. Then, Rab is known to become orthogonal
with unit determinant. Such a matrix belongs to a
Lie group of dimension three, called SO(3) = fRab 2
R3�3jRabR

T
ab=RT

abRab= I;det(Rab)=+1g. The con-
�guration space of the rigid body motion is the prod-
uct space of R3 with SO(3), which should be denoted
as SE(3) throughout this paper (see, e.g. [14]).

2. Relative Rigid Body Motion

2.1 Relative Rigid Body Motion Model
We consider the eye-in-hand system [1] depicted in

Fig. 1, where the coordinate frame �w represents the
world frame, �c represents the camera (end-e�ector)
frame, and �o represents the object frame, respec-
tively. Let pco 2R

3 and Rco 2R
3�3 denote the posi-

tion vector and the rotation matrix from the camera
frame �c to the object frame �o. Then, the rela-
tive rigid body motion from �c to �o can be repre-
sented by (pco;Rco)2SE(3). Similarly, we will de�ne
the rigid body motion (pwc;Rwc) from �w to �c, and
(pwo;Rwo) from �w to �o, respectively, as in Fig. 1.

The objective of the visual feedback control is to
bring the actual relative rigid body motion (pco;Rco)
to a given reference (pd;Rd) (see, e.g. [1]). Our goal
is to determine the camera's motion via the visual in-
formation for this purpose. The reference (pd;Rd) for
the rigid motion (pco;Rco) is assumed to be constant
in the paper.

In this subsection, let us derive a model of the
relative rigid body motion. The rigid body motion
(pwo;Rwo) of the target object, relative to the world
frame �w, is given by

pwo = pwc+Rwcpco (1)

Rwo =RwcRco (2)

which is a direct consequence of a transformation of
the coordinates in Fig. 1. These coordinate transfor-
mations can be found in Ref. [14] (Chap.2, Eq.(2.3)
and (2.22)). Using the property of a rotation matrix,
i.e. R�1 =RT, the rigid body motion (1) and (2) is
now rewritten as

pco =RT
wc(pwo�pwc) (3)

Rco =RT
wcRwo: (4)

The dynamic model of the relative rigid body mo-
tion involves the velocity of each rigid body. To this
aid, let us consider the velocity of a rigid body as
described in Ref. [14]. Let !̂wc and !̂wo denote
the instantaneous body angular velocities from �w

to �c, and from �w to �o, respectively [14] (Chap.2,
Eq.(2.49)). Here the operator `^' (wedge), from R3

to the set of 3�3 skew-symmetric matrices so(3), is
de�ned as

â=(a)^ :=

2
4 0 �a3 a2

a3 0 �a1
�a2 a1 0

3
5; a=

2
4 a1a2
a3

3
5:

The operator `_' (vee) denotes the inverse operator to
`^': i.e., so(3)!R3. Recall that a skew-symmetric
matrix corresponds to an axis of rotation (via the
mapping a 7! â). With these, it is possible to spec-
ify the velocities of each rigid body as follows [14]
(Chap.2, Eq.(2.55)).

_pwc=Rwcvwc; _Rwc=Rwc!̂wc (5)

_pwo=Rwovwo; _Rwo=Rwo!̂wo: (6)

Note that the above formula will be utilized in Ap-

pendix 1.
Di�erentiating (3) and (4) with respect to time,

we can obtain

_pco =�vwc+ p̂co!wc+Rcovwo (7)
_Rco =�!̂wcRco+Rco!̂wo (8)

where detailed derivation can be found in Appendix
1. Now, let us denote the body velocity of the camera
relative to the world frame �w as

uc := [vTwc !
T
wc]

T: (9)

Further, the body velocity of the target object relative
to �w should be denoted as

Vwo := [vTwo !
T
wo]

T: (10)

Then we can rearrange the above eqs. (7) and (8) in
a matrix form as follows.�

_p

( _RRT)_

�
=

�
�I p̂

0 �I

�
uc+

�
R 0
0 R

�
Vwo: (11)

Here (p;R) denotes (pco;Rco) for short. The eq. (11)
should be the model of the relative rigid body motion.
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2.2 Property of Relative Rigid Body

Motion
Let us de�ne the error of the relative rigid body

motion as

(per;Rer) := (p�pd;RR
T
d ) (12)

where the reference of the relative rigid body motion
(pd;Rd) is assumed to be constant. Note that p= pd
and R=Rd i� per =0 and Rer = I .

From the eqs. (11) and (12) with the property of
`^' (wedge) (i.e., âT=�â; a2R3), the error equation
of the relative rigid body motion can be given by�

_per
( _RerR

T
er)

_

�
=�BT(p)uc+

�
R 0
0 R

�
Vwo (13)

where B is de�ned as

B(a)=

�
I 0
â I

�

for any vector a2R3. Let the matrix sk(R) denote
1

2
(R�RT) and let

eR(R) := sk(R)_ (14)

represent an error vector of the rotation matrix R.
Further, we de�ne an error vector of the relative rigid
body motion as follows.

er :=
�
pTer eTR(Rer)

�T
: (15)

It should be noted that er =0 provided per =0 and
Rer = I . Then the following lemma can be obtained.
[Lemma 1] If the target object is static, i.e. Vwo=
0, and er(0)= 0, then for the system (13), we have

Z T

0

uTc �cdt� 0; 8T > 0 (16)

where �c is de�ned by

�c=�B(pd)er: (17)

(Proof) Consider the positive de�nite function de-
�ned as

Vc=
1

2
kperk

2+�(Rer) (18)

where � is the error function of the rotation matrix
and important for our proposed scheme. We refer to
Appendix 2 for this error function on SO(3).

From the property of `^' (wedge), i.e. `^' is the
cross product operator and â is a 3�3 skew-symmetric
matrix, we have pTerp̂er!wc =�pTer!̂wcper =0.

Using this fact and evaluating the time derivative
of Vc gives us

_Vc = pTer _per+eTR(Rer)( _RerR
T
er)

_

= eTr

�
_per

( _RerR
T
er)

_

�
=�eTr B

T(pd+per)uc

=�eTr B
T(pd)uc+pTerp̂er!wc

=�eTr B
T(pd)uc�pTer!̂wcper=�eTr B

T(pd)uc
= uTc �c: (19)

Since er(0)=0, we have Vc(0)=0. Integrating the eq.
(19) from 0 to T yields

Z T

0

uTc �cdt=Vc(T )�Vc(0)=Vc(T )� 0: (20)

This completes the proof. **
(Remark 1) In the error equation of the relative rigid
body motion (13), pTer!̂wcper = 0 holds. This prop-
erty is analogous to the one of the robot dynamics,
i.e. xT( _M�2C)x=0; 8x2Rm (where M 2Rm�m is
the manipulator inertia matrix and C 2Rm�m is the
Coriolis matrix [14]). Moreover, let us take the body
velocity of the camera uc as the input and �c as its
output. Then, Lemma 1 would suggest that the sys-
tem (13) is passive from the input uc to the output
�c just formally as in the de�nition in Ref. [15].

3. Nonlinear Observer Design

The visual feedback control task should require
information of the relative rigid body motion (p;R).
However, the measurable information is only the one
of image in the visual feedback systems. Hence, we
consider a nonlinear observer which estimates the rel-
ative rigid body motion using information of the im-
age.

First, we shall consider the following dynamic model
which just comes from the actual relative rigid body
motion model (11).

�
_�p

( _�R �RT)_

�
=

�
�I �̂p
0 �I

�
uc+

�
I 0
0 �R

�
ue (21)

where (�p; �R) is the estimated value of the relative rigid
body motion. The new input ue is to be determined
in order to converge the estimated value to the actual
relative rigid body motion. Because the design of ue
needs a property of the whole visual feedback system,
we will propose ue with uc in Section 4.

Next let us derive a model of a pinhole camera as
shown in Fig. 2.

Let � be a focal length. Let poi and pci be coordi-
nates of the target object's i-th feature point relative
to �o and �c, respectively. Using a transformation
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Fig. 2 Pinhole camera
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of the coordinates, we have

pci = p+Rpoi: (22)

The perspective projection of the i-th feature point
onto the image plane gives us the image plane coor-
dinate fi as follows.

fi =
�

zci

�
xci
yci

�
(23)

where pci := [xci yci zci]
T.

It is straightforward to extend this model to the
n image points case by simply stacking the vectors of
the image plane coordinate, i.e. f := [fT

1 ��� fT
n ]

T 2
R2n. Then the camera model can be expressed by
the mapping � :SE(3)!R2n

f =�(p;R) (24)

where � is de�ned through the eqs. (22) and (23).
Now, we de�ne the estimation error between the

estimated value (�p; �R) and the actual relative rigid
motion (p;R) as

(pee;Ree) := (p� �p; �RTR): (25)

As is already noted that, if p= �p and R= �R, then it
follows pee=0 and Ree= I . Using the notation eR(R)
de�ned in the eq. (14), the vector of the estimation
error is given by

ee :=
�
pTee e

T
R(Ree)

�T
: (26)

Note that ee=0 i� pee=0 and Ree= I .
Next, we will derive the measurement equation

from the camera model (24). Suppose the estimation
error is small enough that we can let Ree'I+sk(Ree),
then the eq. (22) becomes

pci = �pci� �Rp̂oieR(Ree)+pee (27)

where �pci := �p+ �Rpoi and the above equation has been
described in more detail in Appendix 3.

Using Taylor expansion, the �rst order approxi-
mation of the eq. (23) is

fi= �fi+

2
664

�

�zci
0 �

��xci
�z2ci

0
�

�zci
�
��yci
�z2ci

3
775(pci� �pci) (28)

where �pci= [�xci �yci �zci]
T and �fi :=

�

�zci
[�xci �yci]

T.

Assumption 1 The error of the approximation in
the eq. (28) is negligible.
(Remark 2) Assumption 1 holds in the neighborhood
of the equilibrium point, although this approxima-
tion may be an obstacle to guarantee global stability
[8{10]. If the initial error is large, a path planning
approach [16] will be also e�ective in our proposed
framework.

Under Assumption 1, an approximation of the non-

linear function � around the estimated value (�p; �R)
then is given by

f� �f = J(�p; �R)ee: (29)

The matrix J(�p; �R) :SE(3)!R2n�6 is de�ned as

J(�p; �R) :=

2
6664
L1(�p; �R)
L2(�p; �R)

...
Ln(�p; �R)

3
7775 (30)

Li(�p; �R) :=

2
664

�

�zci
0 �

��xci
�z2ci

0
�

�zci
�
��yci
�z2ci

3
775
�
I; � �Rp̂oi

�
;

i=1;���;n (31)

where [�xci �yci �zci]
T = �p+ �Rpoi. Note that the matrix

J(�p; �R) is like as the image Jacobian which plays an
important role in many researches of the visual feed-
back control [1].

The following assumption will be made.
Assumption 2 For all (�p; �R)2SE(3), the matrix
J(�p; �R) is full column rank.
Under Assumption 2, the relative rigid body motion
can be uniquely de�ned by the image feature vector.
Because Assumption 2 may not hold in some cases
when n=3, it is known that n� 4 is desirable for the
full column rank of the image Jacobian [17].

The above discussion shows that we can derive the
vector of the estimation error ee from image informa-
tion f and the estimated value of the relative rigid
body motion (�p; �R),

ee= Jy(�p; �R)(f� �f) (32)

where y denotes the pseudo-inverse. Therefore the
estimation error ee can be exploited in the 3D visual
feedback control law using image information f ob-
tained from the camera.

4. Visual Feedback Control

4.1 Visual Feedback Control Problem
In this paper, we rigorously discuss stability and

control performance analysis of the visual feedback
system with the nonlinear observer.

Let us derive a model of the visual feedback sys-
tem. First, we de�ne the control error as follows.

(pec;Rec) := (�p�pd; �RR
T
d ) (33)

which represents the error between the estimated value
(�p; �R) and the reference of the relative rigid body mo-
tion (pd;Rd). It should be remarked that pd= �p and
Rd= �R i� pec=0 and Rec= I .

Using the notation eR(R), the vector of the control
error is de�ned as

ec :=
�
pTec e

T
R(Rec)

�T
: (34)

Note that ec=0 i� pec=0 and Rec= I .
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From the eqs. (21) and (33), the state equation of
the control error can be given by�

_pec
( _RecR

T
ec)

_

�
=

�
�I �̂p
0 �I

�
uc+R1ue (35)

where R1=diagfI; �Rg.
Next, we consider the state equation of the esti-

mation error. Using the eqs. (11), (21) and (25), the
state equation of the estimation error can be obtained
as follows.�

_pee
( _ReeR

T
ee)

_

�
=

�
0 p̂ee
0 0

�
uc�ue+R2Vwo (36)

whereR2=diagfR;Reeg and more detail of the deriva-
tion is shown in Appendix 4.

Using the eqs. (35) and (36), the state equation
of the visual feedback system can be derived as

2
664

_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775=

2
664
�I �̂p I 0
0 �I 0 �R
0 p̂ee �I 0
0 0 0 �I

3
775u+

�
0
R2

�
Vwo

(37)

where

u :=
�
uTc uTe

�T
(38)

denotes the control input.
Let us de�ne the error vector of the visual feed-

back system as

e :=
�
eTc eTe

�T
(39)

which contains of the control error vector ec and the
estimation error vector ee. It should be noted that
the actual relative rigid body motion (p;R) tends to
the reference (pd;Rd) when e! 0.

Henceforth, we regard the error vector e as the
controlled output. Then the visual feedback control
problem can be formulated as follows.
Problem: Given 
 > 0, �nd a control input u such
that the closed-loop system satis�es the control ob-
jectives as follows:
(1) (Internal stability)

If the target object is static, i.e. Vwo =0, then
the equilibrium point e=0 for the closed-loop
system is asymptotically stable.

(2) (L2-gain performance analysis)
The closed-loop system has L2-gain � 
.

Here if the positive constant 
 can be suÆcient
small, then we are able to obtain the extremely small
output e for any Vwo. Furthermore, if the controlled
output tends to zero, i.e. e!0, then (p;R)! (pd;Rd).

4.2 Visual Feedback Control Algorithm

and Internal Stability Analysis
Before deriving the visual feedback control algo-

rithm, we show an important lemma.
[Lemma 2] If Vwo=0 and e(0)=0, then the system

(37) satis�es

Z T

0

uT�d� � 0; 8T > 0 (40)

where � is

� :=

�
�B(pd) 0
RT

1 �I

�
e: (41)

(Proof) Consider the following positive de�nite func-
tion

V =
1

2
kpeck

2+�(Rec)+
1

2
kpeek

2+�(Ree) (42)

which utilizes the error function �. The positive def-
initeness of the function V can be given by the prop-
erty of the error function �. Di�erentiating (42) with
respect to time yields

_V = eT

2
664

_pec
( _RecR

T
ec)

_

_pee
( _ReeR

T
ee)

_

3
775: (43)

Observing that the skew-symmetry of the matrices p̂ec
and p̂ee, i.e. p

T
ecp̂ec!wc=�p

T
ec!̂wcpec=0 and pTeep̂ee!wc

=�pTee!̂wcpee=0, the above equation along the tra-
jectories of the system (37) can be transformed into

_V = eT

2
664
�I �̂p I 0
0 �I 0 �R
0 p̂ee �I 0
0 0 0 �I

3
775u= eT

�
�BT(pd) R1

0 �I

�
u

= uT�: (44)

From e(0) = 0, V (0) = 0 can be derived. Integrating
the eq. (44) from 0 to T , we can obtain

Z T

0

uT�d� =V (T )�V (0)=V (T )� 0: (45)

This completes the proof. **
It is well known that there is a direct link between

passivity and Lyapunov stability. Thus, we propose
the following control input.

u=�

�
Kc 0
0 Ke

�
� (46)

where Kc and Ke are 6�6 positive de�nite matrices
called the control gain and the estimation gain, re-
spectively. The block diagram of the visual feedback
system is shown in Fig. 3.

The result with respect to asymptotic stability of
the proposed control input (46) can be established as
follows.
[Theorem 1] If Vwo=0, then the equilibrium point
e=0 for the closed-loop system (37) and (46) is asymp-
totically stable.
(Proof) In the proof of Lemma 2, we have already
derived that the time derivative of V along the tra-
jectory of the system (37) is formulated as the eq.

{ 5 {
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Fig. 3 Block diagram of the visual feedback system

(44). Using the control input (46), the eq. (44) can
be transformed into

_V =�eTKe (47)

where K is de�ned as

K :=

�
BT(pd) �R1

0 I

��
Kc 0
0 Ke

��
B(pd) 0
�RT

1 I

�
:

This completes the proof. **
In the proof of Theorem 1, the positive de�nite

function V plays the role of a Lyapunov function.
(Remark 3) Lemma 2 can be interpreted as follows:
The visual feedback system (37) is passive from the
input u to the output � just formally as in the de�ni-
tion in Ref. [15].

5. L2-Gain Performance Analysis

In this section, we consider L2-gain performance
analysis of the visual feedback system. Now, let us
de�ne

P :=K�
1

2

2
4 I 0

0

�
1+

1


2

�
I

3
5 (48)

where 
 2R is positive. Then we have the following
theorem.
[Theorem 2] Given a positive scalar 
 and con-
sider the control input (46) with the gains Kc and Ke

such that the matrix P is positive semi-de�nite, then
the closed-loop system (37) and (46) has L2-gain �
.
(Proof) Di�erentiating the positive de�nite function
V de�ned in the eq. (42) along the trajectory of the
closed-loop system and completing the squares yields

_V =�eTKe+eT
�

0
R2

�
Vwo

=

2

2
kVwok

2�
1

2
kek2�


2

2




Vwo� 1


2
[0 RT

2 ]e



2

�eTKe+
1

2
2
eT
�
0 0
0 I

�
e+

1

2
kek2: (49)

Then the velocity of the target object (in the worst
case) should be derived as

Vwo=
1


2

�
0 RT

2

�
e: (50)

Hence for any Vwo it can be veri�ed that the in-
equality

_V +
1

2
kek2�


2

2
kVwok

2��eTPe� 0 (51)

holds if P is positive semi-de�nite. Integrating the
eq. (51) from 0 to T and noticing V (T )� 0, we have

Z T

0

kek2dt� 
2
Z T

0

kVwok
2dt+2V (0); 8T > 0:(52)

This completes the proof. **
The positive de�nite function V plays the role of the
storage function for L2-gain performance analysis.

6. Numerical Examples

This section presents simulation results to con�rm
the e�ectiveness of the proposed visual feedback con-
trol design. The performance of the controller can
be measured using L2-gain in the proposed approach,
while global stability [8{10] may not be guaranteed.

Let the target object have nine feature points as
in Fig. 4 and move as the following:

0� t< 4 :

pwo(t) = [0:25sin(2�t) 0:25sin(2�t)

1+0:25sin(2�t)]T (m)

Rwo(t) = e(�=8[sin(2�t) cos(2�t) cos(2�t)]T)^

4� t� 8 :

pwo(t) = [0 0 1]T (m)

Rwo(t) = e([0 �=8 �=8]T)^ :

Here (pwo;Rwo) represents the position and the rota-
tion of the center point of the nine feature points in
Fig. 4.

��

������

�

�

�

������	
���
�
�

�

�

��

Fig. 4 Simulation condition

Let us consider initial positions and rotations of
the camera (pwc(0);Rwc(0)) and the estimated value
(�p(0); �R(0)) as follows

pwc(0) = [0 0 0]T (m); Rwc(0)= I

�p(0) = [0 0 1]T (m); �R(0)= I:

Let the reference of the rigid body motion (pd;Rd) be
given by

pd= [0 0 1]T (m); Rd= I:

Then, we would like to bring the actual relative rigid
body motion (p;R) to the reference (pd;Rd).
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Fig. 5 Simulation results

(Kc=24I; Ke=2:4I; 
=0:61)
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Fig. 6 Simulation results

(Kc=72I; Ke=24I; 
=0:21)
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Fig. 7 Simulation results (Euclid norm of e)

Fig. 5 and Fig. 6 present the error vectors of the
relative rigid body motion per and eR(Rer) de�ned in
the eq. (15). In Fig. 5 and Fig. 6, let perx, pery and
perz denote the position error of the X-axis, the Y -
axis and theX-axis, respectively. Similarly, eR(Rer)x,
eR(Rer)y and eR(Rer)z should be expressed.

Fig. 5 illustrates a case of the large 
(=0:61) with
Kc=24I and Ke=2:4I . In contrast, Fig. 6 presents

a case of the small 
(=0:21) with Kc=72I and Ke=
24I . In the case of the static target object, i.e. after
t=4 [s], all errors in Fig. 5 and Fig. 6 tend to zero. It
can be concluded that the equilibrium point is asymp-
totically stable if the target object is static.

On the other hand, there is a di�erence between
the errors in Fig. 5 and the errors in Fig. 6 over the
time interval 0� t < 4 [s]. Fig. 7 shows the Euclid
norm of the error vector e de�ned in (39), i.e. kek.
In Fig. 7, the upper side presents kek for 
=0:61 and
the lower side presents kek for 
=0:21. In the case of

=0:21, the performance is improved as compared to
the case of 
=0:61. After all, the simulation results
show that L2-gain is adequate for the performance
measure of the visual feedback control.

Since the camera model includes the nonlinearity
(i.e. high order terms of the eq. (23) by using Taylor
expansion) in the simulation, J(�p; �R) is not full col-
umn rank numerically if the gain matrices Kc and Ke

are too large (e.g. Kc=100, Ke=100).

7. Conclusions

This paper has discussed stability and L2-gain
performance analysis for the full 3-D visual feedback
system based on passivity from the theoretical stand-
point. By using the representation of SE(3), we have
derived the relative rigid body motion dynamics be-
tween the moving target object and the camera. The
nonlinear observer has been proposed in order to de-
rive the visual feedback system. Based on passivity,
stability and L2-gain performance analysis have been
performed. Especially, we made good use of the error
function on SO(3) as the Lyapunov or storage func-
tions. Finally the simulation results have presented
the e�ectiveness of the proposed controller and L2-
gain performance analysis. Our proposed passivity
approach will enrich the �eld of visual servoing, al-
though there are some problems which need to be
considered. In particular, we expect to systematize
the passivity based visual feedback control as well as
the theory of the robot control based on the passiv-
ity approach. Future work will be devoted to discuss
global stability and a region of attraction in the pro-
posed method by using a path planning approach.
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Appendix

Appendix 1. Model of Relative Rigid Body

Motion

We shall derive the model of the relative rigid
body motion presented in Section 2.1. The property

of the rotation matrix R, i.e. RRT= I , gives us

_RT=�RT _RRT: (A1)

Di�erentiating (3) and (4) with respect to time, and
using the above formula, we have

_p=�RT
wc

_RwcR
T
wc(pwo�pwc)+RT

wc( _pwo� _pwc)
_R=�RT

wc
_RwcR

T
wcRwo+RT

wc
_Rwo:

Substituting the eqs. (3) and (4) yields

_p=�RT
wc

_Rwcp+Rvwo�vwc
_R=�RT

wc
_RwcR+RT

wc
_Rwo:

Using the eqs. (5) and (6), the above equations be-
come

_p=�RT
wcRwc!̂wcp+Rvwo�vwc

=�!̂wcp+Rvwo�vwc (A2)
_R=�RT

wcRwc!̂wcR+RT
wcRwo!̂wo

=�!̂wcR+R!̂wo: (A3)

Recall that the operator `^' implies the cross prod-
uct; i.e., for two vectors a;b 2 R3, âb=�b̂a holds.
Thus, from (A2), we can derive

_p=�vwc+ p̂!wc+Rvwo: (A4)

(A4) and (A3) are identical to (7) and (8), since (p;R)
denotes (pco;Rco).

R!̂RT = (R!)^ holds [14] (Chap.2, Lemma 2.1),
where R2SO(3) and !2R3. From (A3), this yields

_RRT =�!̂wcRR
T+R!̂woR

T

=�!̂wc+(R!wo)
^: (A5)

By taking the operator `_' (vee) for (A5), we have

( _RRT)_=�!wc+R!wo:

Hence, (11) follows.

Appendix 2. Error Function on SO(3)

Let us introduce the notation of the error function.

�(R) :=
1

2
tr(I�R); (A6)

and, for any 3�3 matrix A, sk(A) :=
1

2
(A�AT). The

error function � has the following properties.
Property 1 Let R2SO(3). The following properties
hold.
(1) �(R) = �(RT)� 0 and �(R) = 0 if and only if

R= I .
(2) _�(R) = eTR(R)(R

T _R)_ = eTR(R)(
_RRT)_, where

eR(R) := sk(R)_.
These properties are proved in Ref. [18].

Appendix 3. Approximation of Feature

Point

The approximation of feature point (27) will be
derived. The eq. (22) can be rewritten as

pci = (p� �p)+ �p+ �R �RTRpoi

{ 8 {
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= pee+�p+ �RReepoi: (A7)

Suppose the estimation error is small enough that we
can let Ree ' I+sk(Ree) (which is derived from Ro-

drigues' formula in Ref. [14]), then the equation (A7)
becomes

pci = pee+�p+ �R(I+sk(Ree))poi
= �p+ �Rpoi+ �Rsk(Ree)poi+pee
= �pci+ �Rsk(Ree)poi+pee (A8)

where �pci := �p+ �Rpoi. It should be noted that âb=
�b̂a, 8a;b2R3 and eR(R)=sk(R)_;8R2SO(3) hold,
then we have

pci = �pci� �Rp̂oieR(Ree)+pee: (A9)

Hence, (27) holds.

Appendix 4. State Equation of Estimation

Error

Here we derive the state equation of the estimation
error (36) in Section 3.

Di�erentiating (25) with respect to time is

_pee = _p� _�p (A10)

_Ree =
_�R
T
R+ �RT _R

=� �RT _�R �RTR+ �RT _R: (A11)

Substituting the eqs. (11) and (21) into (A10) yields

_pee =
�
0 p̂ee

�
uc�

�
I 0

�
ue+

�
R 0

�
Vwo: (A12)

Let ue=[vTue !
T
ue]

T. Then _�R can be derived from the
eq. (21) as follows

_�R=�!̂wc �R+ �R!̂ue (A13)

which is similar to the eq. (A3).
Using the above equation and (A3), the eq. (A11)

becomes

_Ree =� �RT(�!̂wc �R+ �R!̂ue) �R
TR

+ �RT(�!̂wcR+R!̂wo)

= �RT!̂wcR� !̂ueRee� �RT!̂wcR+Ree!̂wo
=�!̂ueRee+Ree!̂woR

T
eeRee

=�!̂ueRee+(Ree!wo)
^Ree: (A14)

Furthermore, the above equation can be rewritten as

( _ReeR
T
ee)

_=�!ue+Ree!wo: (A15)

Thus, (36) holds.
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