受動性に基づく3次元視覚フィードバック制御
不二越　丸山　金沢　河合　藤田
Passivity-Based Visual Feedback Control of Rigid Body Motion

Akira Maruyama†, Hiroyuki Kawai‡ and Masayuki Fujita‡
†Nachi Fujikoshi Corp. ‡Kanazawa University

This paper considers the relative rigid body motion (positions and rotations) control problem with visual information. Firstly the model of the relative rigid body motion is shown. Secondly the nonlinear observer is considered in order to derive the visual feedback system. Finally, stability and L_2-gain performance analysis are discussed based on passivity. The key idea of this paper is to utilize an error function of the rotation matrix as an energy function.

1 はじめに

未知の環境下でのロボット制御に視覚情報を用いることは大変有用である [1]. これ視覚情報をフィードバックすることでダイナミクスシステムを制御する方法は視覚フィードバック制御と呼ばれている。近年では、図1に示すようなロボットの手先にカメラを取り付けた、Eye-in-Hand 構造の視覚フィードバックシステムに対して多くの研究がなされている [2]~[4].

視覚フィードバック制御の目的は、3次元空間におけるカメラと対象の相対位置姿勢を、画像情報を用いることにより、目標の位置姿勢と一致させるような制御入力を与えることである。特に、視覚フィードバックシステムは非線形システムであるため、安定性の解析には Lyapunov 関数を用いて安定性の議論をおくこなっている研究としては、対象を平面マニュレータに限定した研究 [5]、[6] やカメラから観測対象までの距離が常に既知であると仮定し安定性の議論をおこなっている研究 [7] などが挙げられるが、これらの研究では視覚フィードバックシステムの有する特性が陽に示されていなかった。一方、ロボットマニュレータ制御へのアプローチとして、ダイナミクスが今後の有する特性を利用する方法が、ダイナミクスベクトル制御（あるいは受動性に基づく制御）と呼ばれて関心を集めている [8]、[9].

図1 視覚フィードバックシステム

本稿では、このアプローチによる3次元空間上の剛体運動モデルの視覚フィードバック制御を考え、視覚フィードバックシステムの有する特性を陽に示した上で、Lyapunov 関数に基づいて安定性の解析をおこなう。また、従来研究ではここになされていなかった視覚フィードバック制御における制御性能解析について議論する。

2 相対位置姿勢運動モデル

図1に示す Eye-in-Hand 構造の視覚フィードバックシステムを考える。いま、基準座標系 Σ_0 におけるカメラ座標系 Σ_c と対象座標系 Σ_s の原点を基準として、それぞれ $p_{wec}, p_{wes} \in \mathbb{R}^3$ とする。また、基準座標系 Σ_0 におけるカメラ座標系 Σ_c と対象座標系 Σ_s の姿勢を表す回転行列を、それぞれ $R_{wec}, R_{wes} \in SO(3)$ とおく。すると、カメラ座標系 Σ_c の位置姿勢は (p_{wec}, R_{wec}) で、対象座標系 Σ_s の位置姿勢は (p_{wes}, R_{wes}) と表される。

カメラ座標系 Σ_c から見て対象座標系 Σ_s の相対位置姿勢を (p_{wes}, R_{wes}) とすると、基準座標系 Σ_0 に対する対象の位置姿勢 (p_{wes}, R_{wes}) は座標変換により

$$p_{wes} = p_{wec} + R_{wec}p_{wes}$$

と表される。回転行列の性質 $(R^{-1} = R^T)$ を用いることで

$$p_{wes} = R_{wes}^T (p_{wec} - p_{wes})$$

$$R_{wes} = R_{wes}^T R_{wes}$$

が導かれる。以下では、この相対位置姿勢 (p_{wes}, R_{wes}) を (p, R) と表記する。

つきに相対位置姿勢の運動モデルを導出するために剛体運動の速度について考える。カメラ座標系 Σ_c と対象座標系 Σ_s の原点的速度ベクトルを、それぞれの座標系を基準にして $v_{wec} \in \mathbb{R}^3$, $v_{wes} \in \mathbb{R}^3$ と表し、Σ_c と Σ_s の回転速度ベクトルを、それぞれの座標系を基準にして $\omega_{wec} \in \mathbb{R}^3$, $\omega_{wes} \in \mathbb{R}^3$ と表す [10]. このとき、それぞれの速度に関して

$$p_{wec} = R_{wec}v_{wec}$$

$$\dot{R}_{wec} = R_{wec}\omega_{wec}$$

が成り立つ [10]. ここで、\wedge (wedge) は $\mathbb{R}^3 \rightarrow so(3)$ (3×3 の歪対称行列の集合) であり、任意の3次元ベクトル $a = [a_1, a_2, a_3]^T$ に対して

$$a^\wedge = \hat{a} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

で定義される。
である。また、\(V(\psi e) : SO(3) \to \mathbb{R}^3 \) は \(\psi (\text{wedge}) \) の逆写像である [10]。

ここで (3), (4) 式を時間微分し、(5), (6) 式の関係を用いると

\[
\dot{p} = -R^T_{\omega_{\psi e}}R_{\psi e}R_T^T(p_{\psi e} - p_{\psi e}) + R_{\psi e}(\psi_{\psi e} - p_{\psi e})
\]

\[
= -v_{\psi e} + \dot{p}\psi_{\psi e} + R_{\psi e} \omega_{\psi e}
\]

(7)

\[
\dot{R} = -R^T_{\omega_{\psi e}}R_{\psi e}R_T^T(R_{\psi e} + R_{\psi e})R_{\psi e}\omega_{\psi e}
\]

\[
= -\dot{\omega}_{\psi e} R + R \dot{\omega}_{\psi e}
\]

(8)

が導かれる。 (7) 式の導出には wedge の性質 \((a, b) \in \mathbb{R}^3, \dot{a}b = -\dot{a}b\) を用いている。また、任意の \(R \in SO(3) \) と \(\omega \in \mathbb{R}^3 \) に対して \(R\dot{\omega}R^T = (R\omega)^\wedge \) が成り立つ ([10] Chap. 2, Lemma 2.1) ことから (8) 式は

\[
\dot{R}R^T = -\dot{\omega}_{\psi e}RR^T + R\dot{\omega}_{\psi e}R^T
\]

\[
= -\dot{\omega}_{\psi e} + (R\dot{\omega}_{\psi e})^\wedge
\]

(9)

となる。

カメラの速度を \(u_e = [v^T_{\psi e}, \omega^\wedge_{\psi e}]^T \in \mathbb{R}^6 \) 、対象の速度を \(v_{\psi e} = [v^T_{\psi e}, \omega^\wedge_{\psi e}]^T \in \mathbb{R}^6 \) とおく。このとき、(7), (9) 式と \(u_e, v_{\psi e} \) を用いることで、相対位置姿勢の運動モデルは

\[
\begin{bmatrix}
\ddot{R}R^T \psi_e^\wedge \\
\end{bmatrix} = \begin{bmatrix}
-I & \dot{\hat{p}} \\
0 & -I \\
\end{bmatrix} u_e + \begin{bmatrix}
R & 0 \\
0 & R \\
\end{bmatrix} v_{\psi e}.
\]

(10)

と表される。

3 非線形オプサーバとカメラモデル

3 次元空間で運動する視覚フィードバックシステムでは、カメラと観測対象との相対位置や相対姿勢を知ることが重要となる。しかし、観測情報の直接画像情報から得ることは一般に困難である。そこで、非線形オプサーバを構築して、視覚情報から相対位置姿勢の推定値 \(\hat{g} = (\hat{p}, \hat{R}) \) を構成する方法を考案する。

そこでまず、(10) 式を利用し、つぎの (11) 式のように与えられるモデルに基づいて、その相対位置姿勢の推定値 \((\hat{p}, \hat{R})\) を求めることを考える。

\[
\begin{bmatrix}
\ddot{\hat{R}}R^T \psi_e^\wedge \\
\end{bmatrix} = \begin{bmatrix}
-I & \dot{\hat{p}} \\
0 & -I \\
\end{bmatrix} u_e + \begin{bmatrix}
R & 0 \\
0 & R \\
\end{bmatrix} v_{\psi e}.
\]

(11)

ここで、推定のために新たに導入した入力ベクトル \(u_e \in \mathbb{R}^6 \) は、推定値 \((\hat{p}, \hat{R}) \) を真値 \((p, R) \) に一致させるように視覚情報を用いえてこれから構成されるものである。

つぎに、図 2 のカメラモデルについて考える。いま、対象上の特徴点が \(p \) と \(q \) であるものとし、観測対象の形状 \(p_{\text{ci}}(i = 1, \ldots, p) \) は既知、またこれらは対象座標系の原点に対して不変であるとする。このとき、カメラから見た特徴点の位置 \(p_{\text{ci}} = [x_{\text{ci}}, y_{\text{ci}}, z_{\text{ci}}]^T \) (\(i = 1, \ldots, p \)) は、相対位置姿勢 \((p, R)\) を用いることで

\[
p_{\text{ci}} = p + Rp_{\text{ci}}
\]

(12)

と座標変換表示される。カメラから得られる特徴点の視覚情報の \(f \in \mathbb{R}^2 \) とき、(12) 式に対し透視変換を通して得られる

\[
f = \pi(p, R)
\]

(13)

と一般に記述できる。

3 次元空間での相対位置姿勢を制御するためには、回転行列 \(R \in SO(3) \) に対する誤差を考える必要がある。そこで、つぎのように定義される誤差関数 \(\phi : SO(3) \to \mathbb{R} \) と回転誤差ベクトル \(e_R \) を考える。

\[
\phi(R) := \frac{1}{2} \text{tr}(I - R)
\]

(14)

\[
e_R := \text{sk}(R)^\wedge \in \mathbb{R}^3, \quad \text{sk}(R) := \frac{1}{2}(R - R^T)
\]

(15)

これらに対して、以下のような性質がある [11]。

1. \(\phi(R) \geq 0 \) であり、\(\phi(R) = 0 \iff R = I \) である。
2. \(\dot{\phi} = e_R^T(R)(R\dot{R})^\wedge = e_R^T(R)(\dot{R}R^T)^\wedge \)。

ここで、非線形オプサーバによる推定値と真値の位置と姿勢の偏差変数を

\[
(p_{\text{ci}}, R_{\text{ci}}) := (p - \hat{p}, \hat{R}^T R)
\]

(16)

と定義する。また、(15) 式を利用し、推定偏差ベクトルとして

\[
e_{\text{ci}} := [v_{\text{ci}}, e_R^T(R_{\text{ci}})^T]
\]

(17)

を定義する。そして、(13) 式のカメラモデルを推定位置姿勢 \((\hat{p}, \hat{R})\) 近傍においてすると

\[
f - \hat{f} = J(\hat{p}, \hat{R})e_{\text{ci}}
\]

(18)

が導かれる。ここで、\(J(\hat{p}, \hat{R}) \) は

\[
J(\hat{p}, \hat{R}) := [L^T(\hat{g}, \hat{R}; p_{\text{ci}}) \cdots L^T(\hat{g}, \hat{R}; p_{\text{ci}})]^T
\]

\[
L(\hat{g}, \hat{R}; p_{\text{ci}}) := \begin{bmatrix}
\frac{\lambda}{z_{\text{ci}}} & 0 & \frac{\lambda z_{\text{ci}}}{z_{\text{ci}}^2} \\
0 & \lambda & \frac{\lambda z_{\text{ci}}}{z_{\text{ci}}^2} \\
\end{bmatrix}
\begin{bmatrix}
I \\
-\hat{R}p_{\text{ci}}
\end{bmatrix}
\]

である。ここで、次の仮定をおく。

仮定 1 任意の \((\hat{p}, \hat{R}) \in SE(3)\) に対して、\(J(\hat{p}, \hat{R}) \) は列フルランクである。
（18）式よりパラメータから得られる視覚情報 \(f - \hat{f} \) を用いることで、推定偏差ベクトルは

\[e_c = J^\dagger (\rho, \tilde{R}) (f - \hat{f}) \]

と構成される。ただし \(J^\dagger (\rho, \tilde{R}) \) は \(J(\rho, \tilde{R}) \) の擬似逆行列である。

4 視覚フィードバック制御

4.1 視覚フィードバックシステムのモデリング

3 次元の剛体運動モデルに対する視覚フィードバックシステムのモデルを導出する。まず、相対位置姿勢に対する目標値を \((\tilde{p}_d, \tilde{R}_d) \) と表し、これらは一定であるとする。このとき、この目標値と間での偏差変数を考える。

\[(\tilde{p}_{rc}, \tilde{R}_{rc}) := (\tilde{p} - \tilde{p}_d, \tilde{R} \tilde{R}_d^T) \quad (20) \]

これは推定値 \(\tilde{R} \) と目標値 \((\tilde{p}_d, \tilde{R}_d) \) の間の偏差である。（15）式を用いて（20）式から制御偏差ベクトルを

\[e_c := [\tilde{p}_{rc}^T \tilde{R}_{rc}^T (R_{rc})]^T \]

と定義する。（11）, （20）式より、制御偏差ベクトルに関する方程式として

\[\begin{bmatrix} \tilde{p}_{rc} \\ \tilde{R}_{rc} \end{bmatrix} = \begin{bmatrix} -I & \dot{\tilde{R}} \\ 0 & -I \end{bmatrix} e_c + R_1 u_c \]

が導かれる。ただし \(R_1 = \text{diag} \{ I, R, R \} \) である。

次に、推定値 \(\tilde{p}_{rc} \) に関する方程式について考える。（10）, （11）および（16）式を用いることで、推定値 \(\tilde{p}_{rc} \) の方程式は

\[\begin{bmatrix} \tilde{p}_{rc} \\ \tilde{R}_{rc} \end{bmatrix} = \begin{bmatrix} 0 & \tilde{p}_{rc} \\ 0 & \tilde{R} \end{bmatrix} e_c + R_2 V_{rc} \]

と導出される。ただし \(R_2 := \text{diag} \{ R, R_{rc} \} \) と定義する。

（22）, （23）式を用いることで、3次元視覚フィードバックシステムのモデルとして

\[\begin{bmatrix} \tilde{p}_{rc} \\ \tilde{R}_{rc} \end{bmatrix} = \begin{bmatrix} -I & \dot{\tilde{R}} \\ 0 & -I \end{bmatrix} e_c + \begin{bmatrix} 0 \\ R_2 \end{bmatrix} V_{rc} \]

が導かれる。ここで、入力ベクトルとして

\[u := \begin{bmatrix} u_c^T \\ u_v^T \end{bmatrix} \]

と定義する。また、（17）, （21）式より制御ベクトルとして

\[e := [e_c^T \ e_v]^T \]

と定義する。

いま、任意のベクトル \(a \in \mathbb{R}^3 \) に対して行列 \(B : \mathbb{R}^3 \rightarrow \mathbb{R}^{6 \times 6} \) を

\[B(a) := \begin{bmatrix} I & 0 \\ \tilde{a} & I \end{bmatrix} \]

と定義する。このとき、（24）式の 3次元視覚フィードバックシステムに関してつぎの補題が成り立つ。

補題 1（24）式において、観測対象が静止している。すなわち \(V_{rc} = 0 \) である。このとき、\(e(0) = 0 \) のもとで、\(u \) と

\[\nu := \begin{bmatrix} -B(\tilde{R}) \tilde{p}_c \\ R_1 \end{bmatrix} e \]

の間に

\[\int_0^T u^T \nu dt \geq 0 \]

が成り立つ。

証明 エネルギー関数として、次式の正定間数を考慮する。

\[V = \frac{1}{2}\| p_{rc} \| ^2 + \varphi(\tilde{R}_{rc}) + \frac{1}{2}\| p_{rc} \| ^2 + \varphi(\tilde{R}_{rc}) \]

（29）式は、制御偏差と推定偏差における、位置の誤差エネルギーと姿勢の誤差エネルギーにより構成されている。（29）式を時間微分すると

\[\dot{V} = e^T \begin{bmatrix} -B(\tilde{R}) & R_1 \\ 0 & -I \end{bmatrix} u \]

が導かれる。この両辺を積分することで

\[\int_0^T u^T \nu dt = V(T) - V(0) = V(T) \geq 0 \]

が成り立つ。

注意 1 補題 1 は、（24）式の 3次元空間上の剛体運動モデルに対する視覚フィードバックシステムと受動性 [12] との関わりを示している。

4.2 視覚フィードバックシステムと安定性

次に視覚フィードバックシステムと安定性について考える。一般に受動性を満たすシステムでは、その出力にゲインをかけてフィードバックすることで系を安定化できることが知られていることから、制御則 \(u \) をつぎのように構成する。

\[u = -\begin{bmatrix} K_v & 0 \\ 0 & K_e \end{bmatrix} \nu \]

ただし、\(K_v, K_e \) は正定行列である。このとき、つぎの定理が成立する。

定理 1 \(K_v, K_e \) を正定行列とする。観測対象が静止している。すなわち \(V_{rc} = 0 \) のとき、（24）式と（33）式から構成される閉ループ系の平衡点 \(e = 0 \) は近似安定となる。
証明 補題 1 と同様に (29) 式の正定関数を考え、この正定関数を Lyapunov 関数とみなすことで、安定性の証明をおこなう。 (29) 式の解軌道に沿って時間微分は、(31) 式に (33) 式の制御入力を代入することにより

\[\dot{V} = -e^T Ke \tag{34} \]

と導かれる。ここで K は次の定義される。

\[K = \begin{bmatrix} B(p_d) & -R_1 \\ 0 & I \end{bmatrix} \begin{bmatrix} K_c & 0 \\ 0 & K_e \end{bmatrix} \begin{bmatrix} B(p_d) & 0 \\ 0 & -R_1^T I \end{bmatrix} \]

K が正定行列であることより \(\dot{V} < 0 \) が成立立つことから、渐近安定性が示される。

\[K_{\text{制御}} = \begin{bmatrix} I & 0 \\ 0 & (1 + \frac{1}{\gamma^2}) I \end{bmatrix} \tag{35} \]

ただし、\(\gamma \in \mathbb{R} \) は正の数である。このとき、つぎの定理が成立立つ。

定理 2 正の数 \(\gamma \) が与えられ、(33) 式の制御則のゲイン \(K_c, K_e \) を行列 \(P \) が準正定となるように定めるとき、(24), (31) 式からなる閉ループ系は \(\gamma \) 以下の \(L_2 \) ゲインを有する。

証明 観測対象が運動する、すなわち \(V_{oo} \neq 0 \) のとき、(29) 式の正定関数 \(V \) を閉ループ系の解軌道に沿って時間微分し、平坦なゼロを用いると

\[\dot{V} = -e^T Ke + e^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} V_{oo} \]

\[= \frac{\gamma^2}{2} \| V_{oo} \|^2 - \frac{1}{2} \| e \|^2 - \frac{\gamma^2}{2} \| V_{oo} - \frac{1}{\gamma^2} [0 R_2^e] e \|^2 \]

\[-e^T Ke + \frac{1}{\gamma^2} e^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} e + \frac{1}{\gamma^2} e^T \| e \|^2 \tag{36} \]

が導かれる。このとき、最悪制御としての観測対象の速度は

\[V_{oo} = \frac{1}{\gamma^2} \begin{bmatrix} 0 & R_2^e \end{bmatrix} e \tag{37} \]

となる。

これより、任意の \(V_{oo} \) に対して次の不等式が成立立つ。

\[\dot{V} + \frac{1}{2} \| e \|^2 - \frac{\gamma^2}{2} \| V_{oo} \|^2 \leq -e^T Pe \tag{38} \]

行列 \(P \) が準正定性を満たすとし、(38) 式の両辺を積分定数 0 から \(T \) で積分し、さらに \(V(T) > 0 \) のであることから

\[\int_0^T \| e \|^2 dt \leq \frac{\gamma^2}{2} \int_0^T \| V_{oo} \|^2 dt + 2V(0), \forall T > 0 \tag{39} \]

が導かれる。このことから、行列 \(P \) が準正定性を満たすとき (24), (31) 式からなる閉ループ系は \(\gamma \) 以下の \(L_2 \) ゲインを有する。

観測対象の運動を外乱とみなしで、\(L_2 \) ゲイン制御性能を視覚フィードバックシステムにおける追従性能の指標とみなしることができると

6 おわりに

本稿では、3 次元空間上の刚体運動モデルに対する視覚フィードバックシステムが受動性に似た性能を有していることを示し、Lyapunov 関数に基づいて安定性の解析をおこなった。また、観測対象が運動している場合に対して、その運動を外乱と捉えることと視覚フィードバック制御において追従性能の指標となる \(L_2 \) ゲイン制御性能解析について議論した。

参考文献

