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Abstract

This paper investigates a robot motion control with
visual information via the nonlinear receding horizon
control approach. Firstly the model of the relative rigid
body motion and the nonlinear observer are considered
in order to derive the visual feedback system. Secondly
the stabilizing feedback control law for the closed-loop
is discussed as a preparation for our main result. Fi-
nally we propose the stabilizing receding horizon con-
trol scheme for the 3-D visual feedback control problem
by using an appropriate control Lyapunov function as
the end point penalty. The proposed scheme employs
the cost function as a Lyapunov function for establish-
ing stability.

1 Introduction

Vision based control of robotic systems involves the
fusion of robot kinematics, dynamics, and computer
vision system to control the position of the robot end-
effector in an efficient manner. The combination of
mechanical control with visual information, so-called
visual feedback control or visual servo, should become
extremely important, when we consider a mechanical
system working under dynamical environments. Recent
research efforts toward this direction have been nicely
collected in [1].

This paper deals with the relative rigid motion control
of the target with respect to the camera frame. This
control problem is standard and important, and has
gained much attention of researchers for many years
[1]-[4]. The control objective is to move the end effector
of the manipulators in a three-dimensional workspace
by visual information. The typical example is shown
in Fig. 1. Hence the dynamics of the relative rigid
motion is described by the nonlinear systems in a 3-D
workspace. However few rigorous results have been ob-
tained in terms of the nonlinear control aspects. For
example, there exist no researches that explicitly show
the Lyapunov function for the 3-D visual feedback sys-
tems except [4]-[7].
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Figure 1: Eye-in-Hand Visual Feedback System

Recently there has been a rapidly growing interest in
using receding horizon control, also known as model
predictive control, for the nonlinear systems [8]. This
interest is partly due to the availability of faster and
cheaper computers as efficient numerical algorithms for
solving optimization problems. In [9], Ohtsuka et al.
have applied the nonlinear receding horizon control to
obstacle avoidance of a space-vehicle model. While,
stability is an overriding requirement and much of liter-
ature has suggested different methods to guarantee the
closed-loop stability of the receding horizon scheme. In
a recent paper by De Nicolao et al. [10], the receding
horizon controller guarantees closed-loop stability by
using a possibly non quadratic end point penalty. Jad-
babaie et al. [11] have followed the method of De Nico-
lao et al. by using the control Lyapunov function as the
end point penalty, and have shown that stability of the
receding horizon scheme is guaranteed. Authors [12]
have proposed the stabilizing receding horizon control
scheme for the visual feedback control of the planar ma-
nipulators by using an appropriate control Lyapunov
function as the end point penalty.

In this paper, we discuss stability for the 3-D visual
feedback control problem based on a nonlinear reced-
ing horizon control scheme. The proposed scheme em-
ploys the cost function as a Lyapunov function for es-
tablishing stability. In order to derive the full 3-D vi-
sual feedback system, we will consider a relative rigid
body motion dynamics and a nonlinear observer. A
control Lyapunov function and a corresponding control



law for the 3-D visual feedback system play a crucial
role for the proposed scheme. This research continues
the works presented in [6] which has investigated the
full 3-D visual feedback control, and [12] which has pro-
posed the stabilizing receding horizon control law for
the planar motion types.

This paper is organized as follows. In Section 2, we
consider the relative rigid body motion model. Section
3 derives the nonlinear observer which estimates the
relative rigid body motion. Section 4 considers the 3-D
visual feedback control as a preparation for our main
result. In Section 5, we propose the stabilizing receding
horizon control scheme for the visual feedback system
by using an appropriate control Lyapunov function as
the end point penalty. Finally the conclusion is shown
in Section 6.

2 Relative Rigid Body Motion Model

Let us consider the eye-in-hand system [1] depicted in
Fig. 1, where the coordinate frame ¥, represents the
world frame, ¥. represents the camera (end-effector)
frame, and X, represents the object frame, respectively.
Let peo € R and R., € R3*3 denote the position vec-
tor and the rotation matrix from the camera frame
Y. to the object frame X,. Then, the relative rigid
body motion from ¥, to X, can be represented by
(Peos Reo) € SE(3). Similarly, we will define the rigid
body motion (pye, Ruwe) from X, to 3., and (puwo, Ruwo)
from ¥, to X,, respectively, as in Fig. 1.

The objective of the visual feedback control is to bring
the actual relative rigid body motion (pe,, Reo) to a
given reference (pg4, Rq). Our goal is to determine the
camera’s motion via the visual information for this
purpose. The reference (p4, R4) for the rigid motion
(Peoy Reo) is assumed to be constant in the paper.

In this subsection, let us derive a model of the relative
rigid body motion. The rigid body motion (pwe, Ruwo)
of the target object, relative to the world frame X,,, is
given by

Pwo = Pwe T chpco (1)

Rwo = chRco (2)
which is a direct consequence of a transformation of
the coordinates in Fig. 1. These coordinate transforma-
tions can be found in [13] (Chap.2, Eq.(2.3) and (2.22)).
Using the property of a rotation matrix, i.e. R~! = RT,
the rigid body motion (1) and (2) is now rewritten as

Pco = Rgc(pwo - pwc) (3)
Rco = RZ;cho- (4)

The dynamic model of the relative rigid body motion
involves the velocity of each rigid body. To this aid, let

us consider the velocity of a rigid body as described in
[13]. Let &we and @y, denote the instantaneous body
angular velocities from ¥, to X., and from ¥, to 3,,
respectively [13] (Chap.2, Eq.(2.49)). Here the oper-
ator ‘A’ (wedge), from R® to the set of 3 x 3 skew-
symmetric matrices so(3), is defined as

0 —as as ay

N = N —
a=(a)" := as 0 -—-a1 |, a=] as
—as ap 0 as

While, the operator ‘v’ (vee) denotes the inverse oper-
ator to ‘A’ i.e., so(3) — R3. With these, it is possible
to specify the velocities of each rigid body as follows
[13] (Chap.2, Eq.(2.55)).

pwc = chvwca ch = chdjwc (5)

pwo = Rwovwoa Rwo = Rwo‘:}wo- (6)

Differentiating (3) and (4) with respect to time, we can
obtain

pco = —Vwe + ﬁcowwc + Rcovwo (7)
Rco = _djchco + Rcodjwo- (8)

Now, let us denote the body velocity of the camera
relative to the world frame ¥, as

e = [vge wipe] " 9)

Further, the body velocity of the target object relative
to ¥,, should be denoted as

Vo := [T, WL 1T (10)

wo wo

Then we can rearrange the above equations (7) and (8)
in a matrix form as follows.

[y J= 15 2 ]es [8 R ]
(11)

Here (p, R) denotes (peo, Rco) for short. The equation
(11) should be the model of the relative rigid body
motion.

3 Nonlinear Observer Design

The visual feedback control task requires information
of the relative rigid motion (p, R). However image in-
formation is only measured in the visual feedback sys-
tems. Thus, let us propose a nonlinear observer which
estimates the relative rigid motion.

Now, we consider the following dynamic model which
just comes from the relative rigid body motion (11).

R I e



where (P, R) is the estimated value of the relative rigid
motion, and u, is the estimated input which is consti-
tuted by image information in order to converge the
estimated value to the actual relative rigid motion.

Next let us derive a pinhole camera model as shown in
Fig. 2. Let A be a focal length, p,; and p.; be coordi-

Figure 2: Pinhole camera model of the visual feedback
system.

nates of the object’s i-th feature point relative to X,
and Y., respectively. Then, from a transformation of
the coordinates, we have

Pei =D+ Rpoi (13)

The perspective projection of the i-th feature point
onto the image plane gives us the image plane coor-
dinate f; as follows.

Az
= ct 14
f Zci [ Yei :| ( )
where pe; .= [Zci Yei Zci]T-

It is straightforward to extend this model to the n im-
age points case by simply stacking the vectors of the
image plane coordinate, i.e. f:=[f{ --- fI7 € R*".

Let us define the estimation error between the esti-

mated value (p, R) and the actual relative rigid motion
(p, R) as

(p€€7R€€) = (p_ﬁ7 RTR)' (15)

Let the matrix sk(R) denote (R — R”) and let
er(R) = sk(R)" (16)

represent the error vector of the matrix R. Using the
notation er(R), the vector of the estimation error is
given by

ee := [pie ep(Ree)]" (17)

Then we consider the measurement equation from the
equations (13) and (14). Suppose the estimation error

is small enough that we can let R, ~ I 4 sk(Re.), the
equation (13) becomes

Pei = ﬁci — RﬁoieR(Ree) +pee (18)

where p.; := p + Rp,i;. Using Taylor expansion, the
equation (14) can be written as

_>\ 0 _ A_igci
261 N~ ] (Pei — Pei)  (19)
Zei Egi

fi:fi-f-

where ﬁci = [jcz gci zci]T and le = ;\j[jjm gci]T

An approximation of image information f around the

estimated value (p, R) is given by

f - f = J(ﬁv R)ee (20)

where the matrix J(p, R) : SE(3) — R2"*6 is defined
as

_L(pal?;pol)
_ L(paR;pOZ)
J(p,R) := : (21)
_L(p;R;pon)
_ [ A 0 -2 _
L, Ripot) = | o o g | [ — Rboi] -(22)

Note that the matrix J(p, R) is like as the image Jaco-
bian which plays an important role in many researches
of the visual feedback control[1].

The following assumption will be made.

Assumption 1 For all (5,R) € SE(3), the matrix

J(p, R) is full column rank.

Under the Assumption 1, the relative rigid motion can
be uniquely defined by the image feature vector. More-
over it is known that n > 4 is desirable for the visual
feedback systems.

The above discussion shows that we can derive the vec-
tor of the estimation error e, from image information
[ and the estimated value of the relative rigid motion
(p, 1),

€e = JT(ﬁ: R)(f - f) (23)

where | denotes the pseudo-inverse.

4 Visual Feedback Control Algorithm and
Internal Stability Analysis

In this section, we discuss stability of the visual feed-
back system as a preparation for our main result. In



order to derive the visual feedback system, let us define
the control error as follows.

(pec, Rec) = (P — pa, RRY) (24)

which represents the error between the estimated value
(P, R) and the reference of the relative rigid motion
(pa, Ra). Using the notation eg(R), the vector of the

control error is defined as
e := [pr. en(Rec)]”. (25)

From the equations (12) and (24), the state equation
of the control error can be given by

pec _I D
|: (RecRT)v :| = |: 0 _pI :| uc+R1ue (26)

where R; = diag{I, R}.

Next, we consider the state equation of the estimation
error. Using the equations (11), (12) and (15), the
state equation of the estimation error can be obtained
as follows.

pee 0 Aee
|: (ReeRT)V :| = |: 0 po :|uc_ue +R2Vwo(27)

where Ry = diag{R, R..}-

Using the equations (26) and (27), the state equation
of the visual feedback system can be given by

 Pec -I p 1 0
(ReRT)Y | | 0 -T 0 R y
pee o 0 Aee _I 0
(ReeRT)V o 0 0 -I

0
+ { R :|Vwo (28)
where

wi=[ul' ul ]T (29)

is defined as the input vector.

Let us define the error vector of the visual feedback
system as
T
e=1[cl el] (30)
which contains the control error vector e. and the es-
timation error vector e.. It should be remarked that

the actual relative rigid motion (p, R) tends to the ref-
erence (pq, Rq) if e = 0.

Now, let us consider the following control input.

o[ ][ 5] o

where K. and K. are 6 x 6 positive definite matrices
which are called the control gain and the estimation
gain, respectively. B is defined as
I 0
B(a) = { a I }

for any vector a € R3.

The result with respect to stability of the control input
(31) can be established as follows.

Lemma 1 If V,,, = 0, then the equilibrium point
e = 0 for the closed loop system (28) and (31) is asymp-
totically stable.

Proof: Let us consider the following positive definite
function

1 1
V= §||peC||2 + ¢(Rec) + §||p66||2 + ¢(Ree) (32)

where ¢ := Ltr(I — R), R € SO(3) is the error func-
tion of the rotation matrix and the following properties
hold[14].
#(R) = p(RY) >0 and #(R) =0 iff R=1
O(R) = eR(R)(RTR)" = ej(R)(RRT)".

The positive definiteness of the function V is given by
the property of the error function ¢. Differentiating
(32) with respect to time yields

Dec
. T 15 Y
v | el (33)
(RecRY)Y
Observing that the skew-symmetry of the matrices
ﬁec and ﬁee; ie. pz;ﬁecwwc = _pz;wwcpec = 0 and
pg;ﬁeewwc = —pgzdjwcpee = 0, the above equation along

the trajectories of the system (28) becomes
~ —-B"(ps) R
_ T d 1
V=e { 0 7|
=—el'Ke (34)

where K is defined as

[0 P[5 ) )

Hence the asymptotic stability can be confirmed. ™

Remark 1 The control input u contains the error vec-
tor e which consists of the vector of the control error e,
and the vector of the estimation error e.. e, is derived
from the proposed nonlinear observer. While, e, can
also be obtained from the equation (23), Hence we can
exploit the control input wu.



5 Nonlinear Receding Horizon Control

In this section, we discuss stability of the visual feed-
back system via the nonlinear receding horizon control
approach. Our approach is based on a control Lya-
punov function and a corresponding feedback control
law. The following lemma plays an important role in
stability analysis performed below.

Lemma 2 The positive definite function (32) is a con-
trol Lyapunov function for the visual feedback system
(28).

Proof: From equation (34), the time derivative of V
along the trajectories to the system (28) can be derived
as

. T _
inf{V} = inf { —e” B (pa) Ry u
= 00 ife#0. (36)
Hence, the positive definite function (32) is a control

Lyapunov function for the visual feedback system (28).
This completes the proof. n

Let us consider the Finite Horizon Optimal Control
Problem (FHOCP) for the visual feedback system (28)
which is based on the following cost function

t+T
J(t,e,Tyu) = / he(r), u(r))dr + pV (e(t +T))
(37)

where p € R is positive and pV is a terminal penalty.
Let denote the optimal cost as

J*(t,e,T) =inf J(t,e, T, u). (38)

Now, we propose the following receding horizon opti-
mal control scheme in order to ensure closed-loop sta-
bility.

hie,u) = e Qe + u' Ru (39)
V(e(t +T)) = 5llpeclt + TP + G(Beclt + T)

+;m%u+Tm2+MRmu+T»@m
e(t+T)=¢i(t e, T,u(t,e,T)) (41)
u*(t,e,T) = arginf J (t,e,T,u) (42)

where @ > 0 and R > 0. V is a control Lyapunov
function which has been proved in Lemma 2. At time
t, the finite horizon optimal control problem is solved
over [t,t + T] and the corresponding optimal control
law u*(7), t < 7 < t+T is computed (shown in Fig. 3).

past «—— future target

R '.""."'0'-0-0-0---
(t) °
o ©® s g*(t+l) w(t)

L

| |
tt+1 +T

horizon

Figure 3: Receding Horizon Approach

Then, the optimal control trajectory is set equal to
u*(t,e,T) and the current optimal control law is de-
fined as u*(t). At the next time instant, the whole
procedure will be repeated. ¢, is the flow of the vector
field along the open-loop receding horizon trajectory
u*(t,e,T). If V,,, = 0, then we have the following the-
orem.

Theorem 1 Consider the FHOCP (37) for the visual
feedback system (28) with the following control law

u = —Kpe (43)

where K}, is defined as

wn [ 2[5 5] w

Then the receding horizon optimal control scheme
(39)—(42) is asymptotically stabilizing.

Remark 2 wuy is a stabilizing control law for the visual
feedback system which has been proved in Lemma 1.
An important note is that the stabilizing control law wy,
is never actually applied, but it is just used to compute
the end point penalty.

Proof: Our goal is to prove that J*(¢, e, T') will qualify
as a Lyapunov function for the closed loop system. Let
us consider the following sub-optimal strategy over the
time interval [t + 0, + T + J]
. u*(r) TEt+6,t+1T]
= 4
u {uﬂﬂ TEt+T,t+T+ 0] (45)

where uy is a stabilizing feedback control law for the
closed-loop system (28). Using the equation (45),
J*(t,e,T) can be transformed into

J*(t,e,T)
46
:J(t+6,e*(t+5),T,ﬁ)+/ h(e*,u*)dr

+p[V(e" (t+T)—V(pa(t + Yi +8;e"(t+T),ur)]

t+T+6
—/ hpa(t+T + 5;€*(t +T), ug), ug)dr. (46)
t+T



Since @ is sub-optimal strategy over the time interval
[t+6,t+T+9),

JH(t+ 8,5t +6),T) < J(t+ 6,2 (¢ + ), T, aY47)
holds. Substituting the equation (46) into (47) yields
J(t+ 6,2t +9),T)— J"(t,e,T)

t+3
—/t h(e*,u*)dr
+p[V(ga(t+T + 65"t +T),ur) —V(e"(t+T)]

AN

t+T+6

+/ h(p2(t +T + 0;e*(t+T),ur), ug)dr. (48)
t+T

Dividing both sides of the above equation by § and

taking the limit as § — 0, we have

J(t,e,T) = —e’ Qe — u* T Ru* + pV (e)
+ei" Qe + ufl Rug. (49)

Here, for the sake of simplicity, e is defined as e*(t +
T). Evaluating the time derivative of the control Lya-
punov function (40) along the trajectories to the system
(28) gives us

Viey) = —erl Kek. (50)

Using the equations (43) and (50), the equation (49)
can be transformed into

J*(t,e,T) = —et" Pet — el Qe —u*"Ru*  (51)
where
P:=pK — Q- K} RK},. (52)

There exists a p > 0 such that P is positive definite.
Hence the total derivative of J*(t,e,T) is negative def-
inite. This completes the proof. n

In this section, we have derived the stabilizing reced-
ing horizon control scheme for the visual feedback sys-
tem. The proposed scheme has employed the cost func-
tion as a Lyapunov function for establishing stability.
Our proposed scheme is based on the control Lyapunov
function and the corresponding feedback control law.

6 Conclusions

This paper has discussed stability for the full 3-D visual
feedback control via receding horizon control approach.
By using the representation of SE(3), we have derived
the relative rigid body motion dynamics between the
target object and the camera. The nonlinear observer
has been proposed in order to derive the visual feedback
system. Based on the control Lyapunov function and
the corresponding feedback control law, we have pro-
posed the stabilizing receding horizon control scheme
for the visual feedback system. The proposed scheme
has employed the cost function as a Lyapunov function
for establishing stability.

References

[1] S. Hutchinson, G. D. Hager, and P. I. Corke,
“A Tutorial on Visual Servo Control,” IEEE Trans.
Robotics and Automation, vol. 12, no. 5, pp. 651-670,
1996.

[2] K. Hashimoto, T. Ebine, and H. Kimura, “Visual
Servoing with Hand-Eye Manipulator — Optimal Con-
trol Approach,” IEEE Trans. Robotics and Automa-
tion, vol. 33, no. 6, pp. 1147-1154, 1997.

[3] W. Wilson, C. Williams Hulls, and G. Bell, “Rel-
ative End-Effector Control Using Cartesian Position
Based Visual Servoing,” IEEE Trans. Robotics and Au-
tomation, vol. 12, no. 5, pp. 684-696, 1996.

[4] R. Kelly, R. Carelli, O. Nasisi, B. Kuchen, and
F. Reyes, “Stable Visual Servoing of Camera-in-Hand
Robotic Systems,” IEEE Trans. Mechatronics, vol. 5,
no. 1, pp. 3948, 2000.

[5] A. Maruyama and M. Fujita, “Robust Control
for Planar Manipulators with Image Feature Parameter
Potential,” Advanced Robotics, vol. 12, no. 1, pp. 67—
80, 1998.

[6] A. Maruyama and M. Fujita, “Visual Feedback
Control of Rigid Body Motion Base on Dissipation The-
oretical Approach,” Proc. of 38th IEEE CDC, 1999, pp.
4161-4166.

[7]  A. Maruyama, M. Fujita, M. Watanabe, and H.
Kawai, “Inverse Optimal H,, Disturbance Attenuation
for Planar Manipulators with the Eye-in-Hand Sys-
tem,” Proc. of 39th IEEE CDC, 2000, pp. 3945-3950.

[8] F. Allgéwer and A. Zheng (Eds.), Nonlinear
Model Predictive Control, Progress in Systems and
Control Theory, vol. 26, Birkhduser—Verlag, 2000.

[9] T. Ohtsuka and H. Fujii, “Real-time Optimiza-
tion Algorithm for Nonlinear Receding-horizon Con-
trol,” Automatica, vol. 33, no. 6, pp. 1147-1154, 1997.

[10] G. De Nicolao, L. Magni, and R. Scattolini, “Sta-
bilizing Receding-Horizon Control of Nonlinear Time-
Varying Systems,” IEEE Trans. Automatic Control,
vol. 43, no. 7, pp. 1030-1036, 1998.

[11] A. Jadbabaie, J. Yu, and J. Hauser, “Stabiliz-
ing Receding Horizon Control of Nonlinear Systems: A
Control Lyapunov Function Approach,” Proc. of 1999
ACC, 1999, pp. 1535-1539.

[12] H.Kawai, Y. Kawai, and M. Fujita, “Visual Feed-
back Control of Planar Manipulators Based on Non-

linear Receding Horizon Control Approach,” Proc. of
2001 ACC, 2001, pp. 763-768.

[13] R. Murray, Z. Li, and S. S. Sastry, A Mathemat-
ical Introduction to Robotic Manipulation, CRC Press,
1994.

[14] F. Bullo and R. Murray, “Tracking for Fully Cc-
tuated Mechanical Systems: a Geometirc Framework”
Automatica, vol. 35, no. 1, pp. 17-34, 1999.



