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Abstract

This paper investigates a robot motion control prob-
lem with visual information. Firstly the model of the
relative rigid body motion and the nonlinear observer
are shown in order to derive the visual feedback sys-
tem. Secondly a design algorithm for the 3-D visual
feedback control problem which contains the manipu-
lator dynamics are considered. Finally we discuss sta-
bility and Ly-gain performance analysis for the 3-D vi-
sual feedback system contains the manipulator dynam-
ics. Lo-gain performance analysis can be regarded as
a tracking performance measure for the moving target
object.

1 Introduction

By integrating control and vision, mechanical systems
can move according to a dynamically changing working
space. Tracking of a moving target by a robot manip-
ulator is a typical example of this category in real sit-
uations. The combination of mechanical control with
visual information, the so-called visual feedback control
or visual servo, should become extremely important,
when we consider a mechanical system working under
dynamic environments. Recent research efforts toward
this direction have been nicely collected in [1].

This paper deals with a robot motion control with vi-
sual information. This control problem is standard
and important, and has gained much attention of re-
searchers for many years [2]-[6]. The control objec-
tive is to track a moving target in a three-dimensional
workspace by image information. The typical example
is shown in Fig. 1. Hence the dynamics of the relative
rigid motion is described by the nonlinear systems in a
3-D workspace. However few rigorous results have been
obtained in terms of the nonlinear control aspects. For
example, there exist no researches that explicitly show
the Lyapunov function for the full 3-D visual feedback
systems except the planar motion types [7]-[11].

In this paper, we discuss stability and Ly-gain perfor-
mance analysis as a tracking performance measure for
the full 3-D visual feedback system which consists the
manipulator dynamics. In order to derive the full 3-
D visual feedback system, we will consider a relative
rigid body motion dynamics and a nonlinear observer.
Stability and Ly-gain performance analysis of the 3-D
visual feedback system neglecting the manipulator dy-
namics were carried out in [12]. This paper considers
the further discussions of the authors’ research concern-
ing the visual feedback control, and deals with stability
and Lo-gain performance analysis as a tracking per-
formance measure without neglecting the manipulator
dynamics.

Target Object X,

Figure 1: Eye-in-Hand Visual Feedback System

This paper is organized as follows. In Section 2, we
consider a model of the relative rigid body motion. Sec-
tion 3 shows a nonlinear observer which estimates the
relative rigid body motion. The main theorems con-
cerned with stability and Ls-gain performance analysis
is derived in Section 4. Finally some comments are
discussed in Section 6.

Let a rotation matrix Ry, € R3*3 represent the change
of the principle axes of a frame b relative to a frame a.
Then, R, is known to become orthogonal with unit de-
terminant. Such a matrix belongs to a Lie group of di-
mension three, called SO(3) = {Ra € R3X3|Rabeb =
RT, Ry, = I,det(Ry;) = +1}. The configuration space
of the rigid body motion is the product space of R? with
SO(3), which should be denoted as SE(3) throughout



this paper (see, e.g. [13]).

2 Relative Rigid Body Motion Model

Let us consider an eye-in-hand system depicted in
Fig. 1. X, represents the world frame, X, represents
the camera (end-effector) frame, ¥, represents the ob-
ject frame, respectively. Let p., € R® and R, € R3*3
denote the position vector and the rotation matrix from
the camera frame X, to the object frame X,. Then, the
relative rigid body motion from X. to ¥, can be repre-
sented by (peo, Reo) € SE(3). Similarly, we will define
the rigid body motion (pyc, Ruwc) from ¥, to ., and
(Pwos Ruwo) from ¥, to ¥,, respectively, as in Fig. 1.

The objective of the visual feedback control is to bring
the actual relative rigid body motion (peo, Rco) to a
given reference (pg4, Rq). Our goal is to determine the
camera’s motion via the visual information for this
purpose. The reference (p4, Rq) for the rigid motion
(Peoy Reo) is assumed to be constant in the paper.

In this section, let us derive a model of the relative rigid
body motion. The rigid body motion of the target
object relative to the world frame ¥, (Pwo, Ruwo), 1S
given by

p’wo = pr + RprCO (1)
Rwo = chRco (2)

which is a direct consequence of a transformation of the
coordinates in Fig. 1. These rigid body transformations
can be found in [13](Chapter 2, (2.3) and (2.22)). Using
the property of a rotation matrix, i.e. R~! = R”, the
relative rigid motion is now rewritten as

Pco = Rgc(pwo - pwc) (3)
Rco = RZ;cho- (4)

The dynamic model the relative rigid body motion in-
volves velocities of each rigid body. To this aid, let us
consider the velocity of rigid body as described in [13].
Let @y and @y, denote the instantaneous body angu-
lar velocities from ¥, to ¥., and from ¥, to X,, re-
spectively [13] (Chap.2, Eq.(2.49)). Here the operator
‘A’ (wedge), from R? to the set of 3 x 3 skew-symmetric
matrices so(3), is defined as

0 —as as ajy

P N —
a=(a)" = as 0 —a1 |, a=| as
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While, the operator ‘v’ (vee) denotes the inverse op-
erator to ‘A’ i.e., so(3) — R3. Recall that a skew-
symmetric matrix corresponds to an axis of rotation
(via the mapping a — a). With these, it is possible to

specify the velocities of each rigid body as follows [13]
(Chap.2, Eq.(2.55)).

pwc = chvwca ch = chdjwc (5)
pwo = Rwovwoy Rwo = Rwowwo (6)

Using the property of R, i.e. RT = —RTRRT, differen-
tiating (3) and (4) with respect to time, we can obtain

pco = _RZ;CchRZ;c(pwo - ch) + RZ:C (pwo - pwc)

= _@wcpco + Rcovwo — Vwe (7)
Rco = _RgchcRgcho + Rgcho(:}wo
= _‘ijcRco + Rcowww (8)

Now, let us denote the body velocity of the camera
relative to the world frame ¥, as

e = [vge wipe] " (9)

Further, the body velocity of the target object relative
to ¥,, should be denoted as

Vo := [vL, T 1T (10)

wo wo

Then we can rearrange the above equations (7) and (8)
in a matrix form as follows.

[y J= 15 2 ]es [8 R ]
(11)

Here (p, R) denotes (peo, Reo) for short. We have pre-
sented the relative rigid motion g = (p, R) and derived
the relative rigid body motion model.

It should be noted that the body velocity of the camera,
U, can be directly controlled if the joint velocity sig-
nals can be applied to the manipulator systems. There
exists the manipulator Jacobian Jy(g) [13] which re-
lates the camera’s body velocity u. to the joints angle
velocity as follows.

where ¢ is the velocity of the joints.

3 Nonlinear Observer Design

The visual feedback control task requires information
of the relative rigid motion (p, R). However image in-
formation is only measured in the visual feedback sys-
tems. Hence, we propose a nonlinear observer which
estimates the relative rigid motion.

Let us consider the following dynamic model which is
similar to the dynamic model of the actual relative rigid
body motion (11).

{ <R£T>v } - [ o

,L T

}uc+{é %]ue (13)



where (P, R) is the estimated value of the relative rigid
motion, and the new input u. is the estimated input
which is constituted by image information in order to
converge the estimated value to the actual relative rigid
motion.

Next let us derive a pinhole camera model as shown
in Fig. 2. Let X be a focal length, p,; and p.; be co-

Target Object

Figure 2: Pinhole camera model of the visual feedback
system.

ordinates of the object’s i-th feature point relative to
3, and Y., respectively. The perspective projection of
the i-th feature point onto the image plane gives us the
image plane coordinate f; as follows.

Pei = D+ Rpos, (14)
Az
= ct 15
f Zei |: Yei :| ( )
where pei := [Tei Yei Zei]” -

It is straightforward to extend this model to the n im-
age points case by simply stacking the vectors of the
image plane coordinate, i.e. f := [ff -+ fI]T € R*".
Then the camera model is expressed by the mapping
m:SE(3) - R*™

f==p,R) (16)
where 7 is defined by the equations (14) and (15).

Now, we define the estimation error between the esti-

mated value (p, R) and the actual relative rigid motion
(p, R) as

(p€€7R€€) = (p_ﬁ7 RTR)' (17)

As is already noted that, if p = p and R = R, then it
follows pee = 0 and R, = I.

Let the matrix sk(R) denote (R — R”) and let
er(R) = sk(R)" (18)

represent the error vector of the matrix R. Using the
notation eg(R), the vector of the estimation error is

given by
e := [pr. ep(Ree)] (19)
where e, = 0 holds when p.. = 0 and R.. = I.

Next, we will derive the measurement equation from
the camera model (16). Suppose the estimation error
is small enough that we can let R, ~ I 4 sk(Re.), the
equation (14) becomes

Peci = Dei — RﬁoieR(Ree) + Dee (20)

where p.; := p + Rp,i;. Using Taylor expansion, the
equation (15) can be written as

A 0 —2%u
fi=fi+| A _;ﬁii ] (Pei — Pei)  (21)
Zei z2;
where pci = [a_jci gci gci]T and sz = —L[i’cz gci]T~

Zei

An approximation of the nonlinear function 7 around

the estimated value (p, R) is given by

f=F=J(D Re. (22)

where the matrix J(p, R) : SE(3) — R?"*% is defined
as

i L(pal?;pol)
L _7R; 02
J(p,R) = @ :p ) (23)

L(p;R;pon)
_ [ 2 0 -2« _
L Bipoi) = | ¢ a _agh | [T = Bb] - (24)

L ~er “ei

Note that the matrix J(p, R) is like as the image Jaco-
bian which plays an important role in many researches
of the visual feedback control [1].

The following assumption will be made.

Assumption 1 For all (5,R) € SE(3), the matrix

J(p, R) is full column rank.

Under the Assumption 1, the relative rigid body motion
can be uniquely defined by the image feature vector.
Moreover it is known that n > 4 is desirable for the
visual feedback systems.

The above discussion shows that we can derive the vec-
tor of the estimation error e, from image information
[ and the estimated value of the relative rigid motion
(D, R),

€e = JT(ﬁ: R)(f - f) (25)

where T denotes the pseudo-inverse.



4 Dynamic Visual Feedback Control

In this section, we propose the visual feedback con-
troller with the manipulator dynamics and construct
Lyapunov and storage function. Stability and Ly-gain
performance analysis as a tracking performance mea-
sure will be derived.

4.1 Visual Feedback System

Let us consider the visual feedback system without the
manipulator dynamics. In order to derive the visual
feedback system, we define the control error as fol-
lows.

(pecy Rec) = (p — Pd, RRZZ) (26)

which represents the error between the estimated value
(P, R) and the reference of the relative rigid motion
(pa, Ra). Using the notation er(R), we define the vec-
tor of the control error as

ec = [pL. ek (R..)]". (27)

ec

From the equations (13) and (26), the state equation
of the control error can be given by

]:[_I P :|uc+R1Ue (28)

 Dec
(Rech;)v 0 -1

where R, = diag{I, R}.
Next we consider the state equation of the estimation
error. Using the equations (11), (13) and (17), the

state equation of the estimation error can be obtained
as follows.

pee _ 0 ﬁee _
|: (ReeRZe)v :| B |: 0 0 :|uC e +R2VU}O(29)

where Ry = diag{R, Re.}.

Using the equations (28) and (29), the state equation
of the visual feedback system without the manipulator
dynamics can be derived as

_ Pec -I p I 0
(Rech;)v _ 0 _I 0 R Ue
pee h 0 Aee _I 0 Ue
(ReeRT)V 0 0 0 -I
+ { A ]Vwo (30)

Next, we consider the visual feedback system with ma-
nipulator dynamics based on the equation (30). Since
the camera is mounted on the end effector of the ma-
nipulator, the control input u. is given by

Jo(q)g = e (31)

where J,(q) is the manipulator body Jacobian [13]. The
velocity of the joints ¢ is not directly controlled because
there exists the manipulator dynamics based Euler La-
grange equation.

Before formulating the visual feedback control problem
with the manipulator dynamics, we make the following
assumption on the Jacobian Jy(q).

Assumption 2 The manipulator has 6 degrees of free-
dom, and the manipulator Jacobian J;(g) is the non-
singular matrix.

From this assumption, we can consider the visual feed-
back control problem without the kinematics problems.

Under the assumption, the equation (31) can be trans-
formed into

q=Jy (Quec (32)

where ¢ is the velocity of the joints. Here let us consider
the manipulator dynamics as

M(q)G+Clq,4)g+g(q) =7 (33)

where ¢, ¢, and § are the joints angle, velocity, and
acceleration, 7 is the vector of the input torques. The
joints velocity (32) can be regarded as the reference

Ga := J; (@) te. (34)

Now, we define the error vector with respect to the
joints velocity of the manipulator dynamics as

£:=q— qa- (35)

Let us consider the input torques as follows.

T =ug + M(q)ga + C(g,4)dp + 9(0).  (36)
Substituting the equations (36) and (35) into (33)
yields

M(q)é + C(q, d)€ = ug (37)

where the new input u¢ is to be determined in order
to achieves the control objectives. Using the equations
(30), (35) and (37), the visual feedback system with
the manipulator dynamics can be derived as follows.

M(g)é = —C(g, Q)€ + ug (38)
pe.c I —I ﬁ
(RTR..)V 0 -1 { 0 }
e = R Ji Vwo
3 Dee 0 Dee b(q)€+ R2
(RecR,)" | 00
[ -1 5 I 0
0 -I 0 R Ue
+ 0 ﬁee _I 0 |: e :|(39)
L0 0 0 -I




Let us define the error vector of the visual feedback
system as

T = [fT el eT]T.

e

4.2 Dynamic Visual Feedback Control Algo-
rithm and Internal Stability Analysis

Let us consider the 3-D visual feedback control problem
with the manipulator dynamics. Henceforth, we regard
the error vector x as the controlled output. Then the
visual feedback control problem can be formulated as
follows:

Problem: Given v > 0, find a control input ue, u.
and wu. such that the closed loop system satisfies the
control objectives as follows :

1. (Internal stability) If the target object is static,
i.e. Vo = 0, then the equilibrium point x = 0 for
the closed loop system is asymptotically stable.

2. (Tracking performance in the Ly-gain sense) The
closed loop system has Ls-gain < 7.

We propose the following visual feedback controller

ug = —Jy (@) B(pa)ec — Kt (40)
H } :_{Igc K. } [ _%(f)d) _Ol}e(zu)

where K¢, K. and K, are 6 x 6 positive definite matri-
ces. The matrix B is defined by
I 0
B(a) = [ a I }
for any vector a € R®. Further, the error vector e is
defined as follows.
T T ]T

e:=1[el el

Note that the equation (41) has been proposed for the
visual feedback system without the manipulator dy-
namics in [12].

The result with respect to asymptotic stability of the
proposed controller (40) and (41) can be established as
follows.

Theorem 1 If V,,, = 0, then equilibrium point z = 0
for the closed loop system (38)-(41) has is asymptoti-
cally stable.

Proof: Let us consider the following positive definite
function V' as the Lyapunov function candidate.

1 1
V= §£TM(q)£ + §||pec||2 + ¢(Rec)

ol + 0(Re) (42

where ¢ is the error function of the rotation matrix. We
refer to Appendix A for the error function on SO(3).
It is well known that the inertia matrix M(q) is the
positive definite matrix for all joint g.

Differentiating (42) with respect to time along the tra-
jectories of the system (38)-(41) yields

V = —¢" (I (9)B(pa)ec + Kef)
+5€" (T(q) = 20(0, D) + T B (pa) H(@)€

+eT[ —Bg(pd) 1_%} ] [ Z ]

=-¢tT'Ke¢ —e'K.ce
where

= [P0 P R[]

Note that the matrix M(q) — 2C(q,q) is the skew-
symmetric matrix for all ¢ and q.

Differentiating the positive definite matrix V' with re-
spect to time satisfies V < 0 for all £, e. and e.. Hence
the asymptotic stability can be confirmed. ™

4.3 Tracking Performance Analysis of the Pro-
posed Controller

In this subsection, we will discuss Ly-gain performance
analysis as a tracking performance measure for the vi-
sual feedback system. Now, let us define

P=FK.—=I (43)

1| I 0
_5[0 (1+;—21)]' (44)

where v € R is positive. Then we have the following
theorem with respect to Ls-gain performance analysis
as a tracking performance measure.

Theorem 2 Given a positive scalar v and consider the
visual feedback controller (40) and (41) with the gains
K¢, K. and K. such that the matrices P and @) are
positive semi-definite. Then the closed loop system
(38)-(41) has Ly-gain < 7.

Proof: Differentiating the positive definite function
V along the trajectories of the system (38)-(41) yields

. 0
V=-¢TK —TKCQ+T[ }Vwo.
E Kl —e ete Ry

After the completing-the-square, the velocity of the tar-
get object (in the worst case) should be derived as
1
Vwo:?[o R7 Je. (45)



Hence for any disturbances Vy,, it can be verified that
the inequality

. 1 2
V4 Sllell? = SlIVaol? < —€7P¢ — " Qe < 0(46)
holds if the matrices P and @) are positive semi-definite.

Integrating both sides of (46) from 0 to 7' and noticing
V(T) > 0, we have

T T
[ el s [ vadlPar+2v0), @0
0 0
for all T > 0. This completes the proof. ™

The positive definite function V plays a role of the stor-
age function for Ly-gain performance analysis. La-gain
performance analysis as a tracking performance mea-
sure have been performed.

5 Conclusions

This paper has discussed the full 3-D visual feedback
control which contains the manipulator dynamics from
the theoretical standpoint. By using the representation
of SE(3), we have derived the relative motion dynam-
ics between the moving target and the camera. The
nonlinear observer has been proposed in order to de-
rive the visual feedback system. Stability and Ls-gain
performance analysis as a tracking performance mea-
sure have been performed. Especially, we made good
use of the error function on SO(3) as the Lyapunov or
storage functions.
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A Error Function on SO(3)
Let us introduce the notation of the error function.

1
#(R) := Etr(I — R)
and, for any 3 x 3 matrix A, sk(4) := £(A— A”T). The
error function ¢ has the following properties.
Property 1 Let R € SO(3). The following properties
hold.

—
%

(R) = ¢(RT) > 0 and ¢(R) = 0 if and only if
=1.

2. $(R) = e} (R)(RTR)Y = ef,
er(R) :=sk(R)".

!:U

(R)(RRT)V, where

3. there exist by > % by > 0 such that

boller(R)|I* < ¢(R) < biller(R)|?
for any R € SO(3) which satisfy ¢(R) < 1

These properties are proved in [14].



