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Abstract

This paper deals with the vision-based robot motion
control via the nonlinear receding horizon control ap-
proach. The visual feedback system consists of the ma-
nipulator dynamics and the image dynamics which is
derived from the camera model. We propose the stabi-
lizing receding horizon control scheme which is based
on a control Lyapunov function and a corresponding
feedback control law. The control Lyapunov function
is constructed by the full Lagrangian dynamics based
on the image feature parameter potential. The pro-
posed scheme employs the cost function as a Lyapunov
function for establishing stability of nonlinear reced-
ing horizon control. The effectiveness of the proposed
scheme is illustrated by applying this approach to the
planar model of visual feedback system.

1 Introduction

Vision based control of robotic systems involves the
fusion of robot kinematics, dynamics, and computer
vision systems to control the position of the robot end-
effector. The combination of mechanical control with
visual information should become extremely impor-
tant, when we consider the mechanical systems working
with targets whose position is unknown. Non-contact
sensing is useful in the achievement of many kinds of
the robotics tasks. Recent research efforts toward this
direction have been nicely collected in [1] and [2].

This paper deals with the eye-in-hand approach to the
visual feedback control. The typical example is shown
in Fig. 1. This control problem is important, and has
gained much attention of researchers for recent years
[1]. However, much of previous works assume that the
manipulator dynamics do not interact with the visual
feedback loop. Although this assumption is valid for
slow robot motion, it does not hold for high-speed tasks
where the manipulator dynamics is not neglectable.
Hence, it is important to deal with the visual feed-
back control problems in terms of the nonlinear dy-
namical control aspects [1], [3]. In particular, the Lya-
punov function for the visual feedback systems has been
shown explicitly in [4]-[11].

While, recently there has been a rapidly growing inter-

est in using receding horizon control schemes for control
of the nonlinear systems [12]. In [13], Ohtsuka et al.
have applied the nonlinear receding horizon control to
obstacle avoidance of a space-vehicle model. This inter-
est is partly due to the availability of faster and cheaper
computers as efficient numerical algorithms for solv-
ing optimization problems. In the area of the chemi-
cal process control, receding horizon control methods
have been widely successful. This is due to the fact
that many important industrial chemical processes are
open-loop stable so that stability is not a primary con-
cern for these methods. Several researchers have sug-
gested different methods to guarantee the closed-loop
stability of the receding horizon scheme. In a recent
paper by De Nicolao et al. [14], the receding horizon
controller guarantees closed-loop stability by using a
possibly non quadratic end point penalty which is the
cost incurred if a locally stabilizing linear control law
is applied at the end of the time horizon T'. Jadbabaie
et al. [15] have followed the method of De Nicolao et al.
by using the control Lyapunov function as the end point
penalty, and have shown that stability of the receding
horizon scheme is guaranteed.

In this paper, we propose the nonlinear receding hori-
zon control scheme for the visual feedback system. The
stability of the visual feedback system is discussed with
the manipulator dynamics. A control Lyapunov func-
tion and a corresponding control law which have been
proposed by authors in [10] play a crucial role for the
proposed scheme.

M anipulator

Figure 1: Planar Visual Feedback Configuration



The paper is organized as follows. Section 2 shows
the model of the visual feedback system. Section 3 in-
troduces the control Lyapunov function and the corre-
sponding visual feedback control law which are impor-
tant for the receding horizon control. In Section 4, we
propose the stabilizing receding horizon control scheme
for the visual feedback system. Finally the numerical
example and the conclusion are shown in Section 5 and
6, respectively.

2 System Model

The manipulator model considered here is the well-
known Euler-Lagrange system whose inputs are joint
torques and whose measurement outputs are joint po-
sitions and velocities. A pinhole camera, mounted on
the hand of the manipulator in Fig. 1, is modeled by
an ideal perspective transformation.

2.1 Manipulator Model
The dynamics of a n-link rigid manipulator can be ex-
pressed as

M(q)i+ C(g,d)q+g(a) =, (1)
where
q : n X 1 vector of the joint angles
T : n X 1 vector of control input torques
M(q) : n X n inertia matrix of the manipulator
C(q,4)¢ : n x 1 vector of the Coriolis

and centrifugal torques
9(q) : n x 1 vector of the gravitational torques.
The following properties are well known [16].

Property 1 The inertia matrix M(q) is positive defi-
nite.

Property 2 M(q) —2C(q, §) is skew-symmetric.

Property 2 is concerned with the passivity prop-
erty. These properties are important for the Lya-
punov /passivity based control design.

By using the inertia parameters, the dynamic equation
(1) can be transformed as

M(q)g+C(q,9)4+9(q) =Y (q,4,9)0 =7, (2)

where Y (¢, ¢, ) is an n X p matrix of known functions,
called the regressor, and 6 is a constant p-dimensional
vector of the inertia parameters. The dimension of the
parameter space is not unique.

2.2 Camera Model

We consider a planar manipulator with the world frame
Y ={Xw Yy Z,}. It is assumed that the manipulator
end-effector evolves in the X,, — Y,, plane of ¥,,. Sup-
pose that a camera with the frame ¥, = {X. Y. Z.} is

mounted on the manipulator end-effector as depicted
in Fig. 1. Hence, the manipulator kinematics gives
the camera position “p.(q) := [“z.(q) “y.(¢)]" and
the orientation “6.(q) with respect to ¥,. A frame
Y, = {X,; Y;} is defined in the camera image plane and
its origin is the intersection of the optical axis with the
image plane. Here it is assumed that the axes X; and
Y; parallel the axes X. and Y. respectively, and the
planes X.—Y. and X,, —Y,, are separated by the focal
length [ > 0.

Next the object point “p, is located at [Yx, “yo “2,)
with respect to the frame X,,. We assume that the ob-
ject is static, i.e. “p, = 0. ‘p, = ['x, ‘y,]’ is the image
coordinate of “p, through the perspective transforma-
tion with the frame ¥;.

Taking the perspective transformation as the camera
model (shown in Fig. 1) yields [6]-[10]

'po = 1(0) = R 00) (P~ pel) )

where s > 0 is the scaling factor in pixels/m, “p, :=
[T, 1] and f:R? x R? — R,

Then the differential kinematics of the manipulator
gives the relationship between the manipulator joint
velocities ¢ and the velocities of the camera mounted
on the end-effector. The relation can be represented
using the manipulator Jacobian J,(q) € R"*":

“pe(q) = Jp(q)g- (4)
The derivation of the equation (3) yields
. A )
f=—Ryi—- RRS. (5)

Now, we introduce Property 3 that is important for the
Lyapunov /passivity based control design.

Property 3 [16] R’ R is skew-symmetric.

The following assumptions will be made throughout the
paper:

Assumption 1 There exists a manipulator joint con-
figuration achieving f = 0.

Assumption 2 The Jacobian J, is nonsingular.

Assumption 1 ensures that the control problem is solv-
able. Assumption 2 is required for technical reasons in
the stability analysis.

3 Visual Feedback Control

In this section, we discuss the stability of the visual
feedback control. Since the visual feedback system con-
sists of the equations (1) and (5) which are obtained in



Section 2, we consider the visual feedback system model
described as

M(q)i+C(q,9)q+9(a) =7 (6)
f=- AR~ RES @

By invoking the discussions in [10]

7 =u+ aM(q)n + aC(q,d)n + g9(q)
=u-+ Y(qa CL ar, a":l)97 (8)

where 1 := J;Rf and o € Ry. w is the control input
that will be designed to achieve the visual feedback
control objective.

Substituting the control law (8) into (6) gives us the
following temporally closed loop system

E=-M'Ce+M 'y

f= _%R'JPJ;Rf - j—ZR'Jpg —~RRf, (9)

where & := ¢ — aJ Rf.

The following lemma plays a key role in the stability
analysis performed below.

Lemma 1 [10] Under the Assumption 1 and 2, con-
sider the closed-loop system (9) with the following con-
trol law

u=—K&+ JRf, (10)

where K; € R"*" ig positive definite. Then the equi-
librium point [¢" f']" = 0 of the system (9) is asymptot-
ically stable. Furthermore the solutions of the closed
loop system (9) asymptotically converge to zero, i.e.,
[d f'=0,ast— oo.

Proof: By using Property 1, i.e. M(q) > 0, we can
consider the positive definite function (11) as a Lya-
punov function candidate

£ ()

1
V= €M@+ 5

The above Lyapunov function candidate is constructed
by the full Lagrangian dynamics based on a potential
function of the image feature parameter space, called
image feature parameter potential which has been pro-
posed by the authors in [6]. Evaluating the time deriva-
tive of V along the trajectories to the system (9) gives
us

wzo L
o I'f
=¢M(=MC¢E+ M 1) + %g’Mg

YZo 4 _5)‘_05 ’ ’ _ SA
2 < o BT R = o

V =¢ME+ %g’Mg +

+

R'J,§ —RR f> )

By using Property 2 and 3, i.e., M —2C and R'R are
skew-symmetric, V' is transformed as

V= %f'(M —20)¢+¢&u—af R J,J Rf

_f/R/pr_ S’Z)\OflR/Rf
=&'u— af' R, JRf — f'RJy¢. (12)

Substituting the control law (10) into (12) yields
V=—¢'Ki{+ €T Rf —af RJ,JRf — f'R'J,¢
= —¢'K§ —af R'J,J,Rf, (13)

which is the negative definite function for all [¢" f']" #
0, since R and J, are nonsingular. Hence the asymp-
totic stability can be confirmed. Further, [¢ f']' — 0
is equivalent to [¢" f']’ — 0. O

Lemma 2 [10] The positive definite function (11) is a
control Lyapunov function.

Proof: The equation (12) shows that
inf{V} = inf{—af R'J,J)Rf — f'R J,€ + &'u}

_{ —af'RIJRf if €=0

—o0 it E£0 (14)

Hence, the positive definite function (11) is a control
Lyapunov function for the visual feedback system (9).
O

The above discussions give us the control Lyapunov
function and the corresponding feedback control law
for the visual feedback system. These are important
for the nonlinear receding horizon control.

4 Nonlinear Receding Horizon Control

4.1 Review of Nonlinear Receding Horizon
Control

Here we would like to review the nonlinear receding
horizon control scheme which has been proposed in [15].
Consider the following Finite Horizon Optimal Control
Problem (FHOCP).

t+T
J(t2,T,u) = inf]/t h(e(r), u(r))dr

Ult,t+T
+M (x(t +T)),(15)
subject to & = f(x,u)

where h is a positive definite function of x € R" and
u € R™. Now let J*(t,z,T,u) be the optimal value of
the cost function of the FHOCP. At time ¢, FHOCP
is solved over [t,t + T and the corresponding optimal
control u*(7), t < 7 < t+ T is computed. Then, the
current control is set equal to u*(¢). Repeating these
calculations yields a feedback control law. To ensure
closed-loop stability, the following results was proved
by Jadbabaie et al. [15].



Lemma 3 The receding horizon optimal control
scheme (16) is asymptotically stabilizing if a stabilizing
feedback control law ug(z) is available.

oo

M(z(t+T)) :/

h(¢2 (T; t+ Ta l‘;«, “k)a
t+T

Uk (¢2 (r;t+T,a, uk))>dr
ap = o1t a(t), Tou" (t, 2, T)) (16)
u*(t,z,T) = arginf J(t, x, T, u),
where ¢; is the flow of the vector field along the open-

loop receding horizon trajectory u*, and ¢5 is the flow
along the feedback control law wuj obtained in advance.

Lemma 4 Consider the FHOCP with the following
terminal penalty:

Mzt+T))=pV(z(t+1T)), (17)

where V' is a control Lyapunov function obtained a pri-
ori and p is a design parameter. Denote the optimal
cost associated with this problem by Jj.. Then there
exists a po such that for all p > po, Jy; is a Lyapunov
function for the closed loop system with the receding
horizon feedback.

4.2 Nonlinear Receding Horizon Control with
Visual Feedback System

In this subsection, we consider the stability of the vi-
sual feedback system via the nonlinear receding horizon
control approach.

Consider the Finite Horizon Optimal Control Problem
(FHOCP) for the visual feedback system (9) which is
based on the following optimization
t+T
It Tu) =inf [ B, £(7),ulr)dr
wJe
+pV(x(t+T)). (18)
Let the cost h(&, f,u) be as follows
h(£7 f7 U) = ngIE + fIRIJpQZJll)Rf + UIRU7 (19)

where Q1 > 0, Q2 > 0, and R > 0. p is a design
parameter and V' is a terminal penalty.

To ensure closed-loop stability, we consider the follow-
ing receding horizon optimal control scheme.

V(a(t+ 7)) = 5€(t+ T)ME®+T)

wzo ,

t+T)f(t+T) (20

PP T+ T) (20)

e (t+T) = ¢1(t,z(t), T,u*(t,z,T)) (21)
u*(t,z,T) = arginf J (t,z, T, u), (22)

where z := [¢' f']" and V is a control Lyapunov function

which has been proved in Lemma 2. At time ¢, the finite

horizon optimal control problem is solved over [¢, ¢+ T
and the corresponding optimal control law u*(7), t <
T < t+ T is computed (shown in Fig. 2). Then, the
optimal control trajectory is set equal to u*(¢, z, T') and
the current optimal control law is defined as u*(t). At
the next time instant, the whole procedure is repeated.
@1 is the flow of the vector field along the open-loop
receding horizon trajectory u*(t,z,T).

past «<——— future

target
---------- '.""."'.".". ®---
xX(t) o ®
o °® ? X*(t+1) U*(T)
N _,_I
| |
t T t+1 +T
horizon

Figure 2: Receding horizon approach

Using the argument presented in Lemma 1-4 we have
the following theorem.

Theorem 1 Consider the FHOCP (9) and (18) with
the following control law

up = — K1 £+ J,Rf, (23)

where ¢ := ¢ — an and K; € R®*" is positive defi-
nite. Then the receding horizon optimal control scheme
(20)-(22) is asymptotically stabilizing.

Remark 1 uy is a stabilizing control law for the visual
feedback system which has been proved in Lemma 1.
An important note is that the stabilizing control law wy
is never actually applied, but it is just used to compute
the end point penalty.

Proof: Our goal is to prove that J*(¢, x, T, u) will qual-
ify as a Lyapunov function for the closed loop system.
We construct the following sub-optimal strategy for the
time interval [t, ¢ + T + ]

u*(r) 1€t t+T)

= 24

“ {uk(T) reli+T,e+T o0 Y

where uy, is a stabilizing feedback control law for the

closed-loop system (9). The stabilizing feedback con-
trol low (23) was proposed by the authors in [10].

J*(t,z, T, u) is positive definite, and the time derivative



of J*(t,x,T,u) is as follows.

J*(t,x, T, u)
= pV (@) + &' &y + f1 Ry Tir Qo dyr Ry £
R, — (€ Qi€ + f'R T, Qo RS +u*'Ru ).
(25)

Here, for the sake of simplicity, =% is defined as
z*(t +7T), and &, fr, Ry, Jyp are similarly defined.
Evaluating the time derivative of the control Lyapunov
function (20) along the trajectories to the system (9)
gives us

* * Sk 1 s/ 2 ek wZO s/ px
V(eh) = &3 Méx + EngMfT + 5y 7 I

/ * 1 w1 2ok
=& (—C&p + we) + §£T M¢r

w

Zo */ 8)\0[ PR ] * ! px px

+ v\ By Jprdpr Brfr
SA 2o

SA * * * x ! Dk px
_URT/JpTé.T - RT/RTfT> .

By using Property 2 and 3, V(z%) is transformed as
3 * 1 * y * *
V(zy) = §§T/ (M - 2C)§T + nguk
—afi Ry i i R fi 13 By T
= f}luk -« %/RF ;T‘];TIR;“f;“
—f7' Ry Jorép- (26)

Substituting the stabilizing feedback control law (23)
into (26), we obtain

V(ey) = &' (~Ki&h + Ty Bi i)
—afi Ry JipJyr' Ryl — 17/ Ry T
= &' Ki&y — aff Ry ;TJ;TIR’}f;" (27)

Hence, the equation (25) and the control law (23) give
us

J*(t, x, T, u)
= p(—&' Ka&i — afi/ Ry iz Tyr RS
+ (&' Qs + fi' Ry Jyr QaTir' R fi + uRuy,)
_ (gfglg + ['R'J,QuJ.Rf + u*’Ru*)
= —p&3 K&y — pafy Ry Jyn i R £
+E7' QuEr + 1 By Ty Qadyy Ry
+( K&+ T B ) R(- K + T3 B )
Q1€ — f'R'J, Q2 Rf — u*' Ru*
%/ [ pKl - K\RK, — 9

-t Ry I RE
K\ RJ* R .
*? * x D% CI’IT
pod — R — Ry Jjp Qo i Ry

_le1§ _ fIRIJpQQJII)Rf _ u*IRu*.

Moreover, J*(t,z,T,u) can be formulated as

J*(t,x, T,u) = —a4' Pry — £ Q1€
—f'R'J, Q2 Rf — u*'Ru*, (28)

where

D= [ PK1 - K\RK; — O

R}'J;TRK 1
K 1RJ;T'R}
pal — R — R, J;TQQJ;T'R*T '
If p > 0 is picked such that P is positive definite, then
the total derivative of J*(¢,z, T, u) is negative definite,
which guarantees asymptotic stability. a

We discussed the stabilizing receding horizon control
scheme for the visual feedback system. Our proposed
scheme is based on the control Lyapunov function and
the corresponding feedback control law.

5 Numerical Example

To illustrate the behavior of the visual feedback con-
trol, we apply the receding horizon control to a two-link
planar manipulator with an eye-in-hand system. The
entries of the inertia matrix M (¢) and the Coriolis and
centrifugal matrix C'(g, §) are given by

My + M5 + 2R cos Ms + R cos
M(q):[ 1 2 1 q2 2 1 QQ}

My + Rcosgs Mo
. | —Ridesings —Ry (¢1 + ¢2)singe
C(qa Q) - |: Rldl sin Q2 0

Ml = Il + mﬂ“% + mzl%
M2 = _[2 + mng
R1 = ’ITLQT'Qll.

Since the robot moves in the horizontal plane, we have
g(g) = 0 € R?. The rotation matrix R and the Jaco-
bian matrix J, are described as

_ | cos(ar +q2) —sin(g1 +g2)
sin(q1 +¢2)  cos(q1 + q2)

g | “hsing —lsin(gi +g2)  —lasin(gr +g2)
p Iy cosqy + lacos(q1 + ¢2) lacos(qr +q2) |-

The distance between the optical center and robot
workspace plane is ¥z, = 1.86 m. It is assumed
that the focal length A multiplied by the scale fac-
tor s, i.e. s\, is equal to 2180 pixels. The target
has been placed in the X, — Y, plane at P, =
[ 0.3414 —0.1414 ). The initial conditions of the
robot positions and velocities are set as follows: ¢;(0) =
0 rad, ¢2(0) = 7/2 rad, and ¢1(0) = ¢2(0) = 0 rad/s.
Hence, the initial state isz(0) =[ & & f1 f2 ] =
[ 113 33 —400 —165 ]

The gain matrices are chosen as Q; = diag{4,2},
Q- = diag{4,2}, and R, = diag{4,2}. We pick p = 10
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Figure 4: Image position errors and velocity errors

and the horizon length 7" = 0.05 with a sampling time
0.01 s.

In receding horizon control, the current control at state
x and time ¢ is obtained by determining on-line (the
open-loop) optimal control u*(¢,z,T) over the interval
[t,t + T] and setting the control equal to u*(t). Re-
peating this calculation continuously yields a feedback
control (since u*(t) clearly depends on the current state
z). The optimal control problem (9) and (18) is solved
on-line. Fig. 3 shows the control input u, and Fig. 4
shows the image position error f and £ tend asymptot-
ically to zero. It can be seen that the equilibrium point
of the visual feedback system is asymptotically stable.

6 Conclusion

In this paper, the nonlinear receding horizon control
for the visual feedback system has been discussed. In
particular, we proposed the stabilizing receding horizon
control scheme which is based on the control Lyapunov
function and the corresponding feedback control law.
The proposed scheme has employed the cost function
as a Lyapunov function for establishing stability of non-
linear receding horizon control. Moreover, the numeri-
cal example was reported to illustrate the effectiveness
of the proposed scheme.
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