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This paper investigates a robot motion control with visual information via the nonlinear receding horizon control

approach. Firstly the model of the relative rigid body motion and the nonlinear observer are considered in order

to derive the visual feedback system. Secondly the stabilizing feedback control law for the closed-loop system is

discussed as a preparation for our main result. Finally we propose the stabilizing receding horizon control scheme

for the 3-D visual feedback control problem by using an appropriate control Lyapunov function as the end point

penalty. The proposed scheme employs the cost function as a Lyapunov function for establishing stability.

1 Introduction

Vision based control of robotic systems involves the fu-
sion of robot kinematics, dynamics, and computer vision sys-
tem to control the position of the robot end-effector in an ef-
ficient manner. The combination of mechanical control with
visual information, so-called wisual feedback control or visual
servo, should become extremely important, when we consider
a mechanical system working under dynamical environments.

This paper deals with the relative rigid motion control
of the target with respect to the camera frame. This control
problem is standard and important, and has gained much
attention of researchers for many years [1]-[5]. The control
objective is to move the end effector of the manipulators in
a three-dimensional workspace by visual information. The

typical example is shown in Fig. 1. While, there has recently
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Fig. 1 Eye-in-hand visual feedback system.

been a rapidly growing interest in using receding horizon con-
trol, also known as model predictive control, for the nonlinear
systems[6]. Especially, stability is an overriding requirement
and much of literature has suggested different methods to
guarantee the closed-loop stability of the receding horizon
scheme[7][8].

In this paper, we discuss stability for the 3-D visual feed-
back control problem based on a nonlinear receding horizon
control scheme. The proposed scheme employs the cost func-
tion as a Lyapunov function for establishing stability. In order
to derive the 3-D visual feedback system, we will consider a
relative rigid body motion dynamics and a nonlinear observer.

A control Lyapunov function and a corresponding control law

for the 3-D visual feedback system play a crucial role for the
proposed scheme.

Let a rotation matrix R, € R**3 represent the change of
the principle axes of a frame b relative to a frame a. Then, R
is known to become orthogonal with unit determinant. Such
a matrix belongs to a Lie group of dimension three, called
SO0(3) = {Rap € R**}|RuwRL, = RL R = I,det(Rap) =
+1}. The configuration space of the rigid body motion is the
product space of R® with SO(3), which should be denoted as
SE(3) throughout this paper (see, e.g. [9]).

2 Relative Rigid Body Motion Model

Let us consider the eye-in-hand system[l] depicted in
Fig. 1, where the coordinate frame X, represents the world
frame, X, represents the camera (end-effector) frame, and 3,
represents the object frame, respectively. Let p.. € R® and
R.o € R**? denote the position vector and the rotation ma-
trix from the camera frame ¥, to the object frame ¥,. Then,
the relative rigid body motion from ¥. to ¥, can be repre-
sented by (peo, Reo) € SE(3). Similarly, we will define the
rigid body motion (pwe, Ruwe) from Xy to X, and (pwo, Rwo)
from ¥, to X,, respectively, as in Fig. 1.

In this section, let us derive a model of the relative rigid
body motion. The rigid body motion (pwo, Rwo) of the target
object, relative to the world frame ¥, is given by

Pwo = Pwe + chpco (1)
Rwo == chRco (2)

which is a direct consequence of a transformation of the co-
ordinates in Fig. 1. These coordinate transformations can be
found in [9] (Chap.2, Eq.(2.3) and (2.22)). Using the property
of a rotation matrix, i.e. R~! = R, the rigid body motion
(1) and (2) is now rewritten as

Pco = Rgc (pwo - pwc) (3)
Rco = Rgcho- (4)

The dynamic model of the relative rigid body motion



involves the velocity of each rigid body. Let @,. and wwo
denote the instantaneous body angular velocities from ¥, to
Y., and from ¥, to X,, respectively [9] (Chap.2, Eq.(2.49)).
Here the operator ‘A’ (wedge), from R® to the set of 3 x 3

skew-symmetric matrices so(3), is defined as
o]

[0 —as a2'|

a= (a)A = as 0 —a; |, a=1| a2 |.
N R
While, the operator ‘v’ (vee) denotes the inverse operator
to ‘A% ie., so(3) — R®. With these, it is possible to spec-
ify the velocities of each rigid body as follows [9] (Chap.2,
Eq.(2.55)).

pwc = chvwcy ch = ch&}wc (5)

pwo = Rwovwo; Rwo = Rwo@wo~ (6)
Differentiating (3) and (4) with respect to time, we can
obtain the model of the relative rigid body motion in a matrix

form as follows [4][5].

[(ngT)v]:[_OI _‘ﬁl]uc—k[? ;}Vwo (7)

where u. := [vI. wI.]7 represents the body velocity of the
camera relative to the world frame ., and Vi, := [vZ, wl,]¥

represents the body velocity of the target object relative to
Y. Here (p, R) denotes (pco, Reo) for short.

3 Estimation of Relative Rigid Body
Motion

The visual feedback control task requires information of
the relative rigid motion (p, R). However image information
is only measured in the visual feedback systems.

Now, we consider the following dynamic model which just

comes from the relative rigid body motion (7).

[(R]%)T)v]:[ OI _pl]uc-f—[é ]%]ue (8)
where (p, R) is the estimated value of the relative rigid mo-
tion, and wu. is the estimated input which is constituted by
image information in order to converge the estimated value
to the actual relative rigid motion.

Next let us derive a pinhole camera model as shown in
Fig. 2. Let X be a focal length, p,; and p.; be coordinates of
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Fig. 2 Pinhole camera model.

the object’s i-th feature point relative to X, and X., respec-
tively. Then, from a transformation of the coordinates, we

have
Pei =D+ Rpoi 9)

The perspective projection of the ¢-th feature point onto the
image plane gives us the image plane coordinate f; as fol-
lows.
A Lci
= — 10
f Zei |: Yei :| ( )
where pei := [Zei Yei Zei]” -

It is straightforward to extend this model to the n image
points case by simply stacking the vectors of the image plane
coordinate, i.e. f :=[ff --- fI]T € R*™.

Let us define the estimation error between the estimated

value (P, R) and the actual relative rigid motion (p, R) as
(pec, Ree) == (p— p, R R). (11)
Let the matrix sk(R) denote (R — R") and let
er(R) :=sk(R)" (12)

represent the error vector of the matrix R. Using the notation

er(R), the vector of the estimation error is defined as
ee = [ple en(Re)]". (13)

Then we consider the measurement equation from
Egs.(9) and (10). Suppose the estimation error is small, an
approximation of image information f around the estimated

value (P, R) can be given as follows [4][5].

.f - .f: J(ﬁ: R)ee (14)
—

R?"%6 ig defined as

L(p, R; po1)
= L(p,R;pOZ)
J(p, R) := : (15)
L L(P, R; pon)
[ 2 0 2%«
L(p, Ripor) = | ' ik [I —Rpos] . (16)

Note that the matrix J(p, R) can be considered as the image

Jacobian[1]. The following assumption will be made.

Assumption 1 For all (p, R) € SE(3), the matrix J(p, R)

is full column rank.

Under the Assumption 1, the relative rigid motion can be
uniquely defined by the image feature vector. Moreover it is
known that n > 4 is desirable for the visual feedback systems.

The above discussion shows that we can derive the vector
of the estimation error e. from image information f and the

estimated value (p, R),
ec = J' (0, R)(f - f) (17)
where T denotes the pseudo-inverse.

In the next section, Egs.(8) and (17) will be exploited in
order to estimate the relative rigid body motion.



4 Visual Feedback Control

Let us consider the visual feedback control as a prepara-
tion for our main result. In order to derive the visual feedback

system, let us define the control error as follows.
(Pec; Rec) := (p — pa, RRJ). (18)

Using the notation er(R), the vector of the control error is
defined as

ee := [pee er(Rec)]” (19)

Using Eqgs.(7), (8), (11) and (18), the model of the visual
feedback system can be given as follows [4][5].

 Pec -1 p I 0
(ReRIL)Y | | 0 -T' 0 R 0

pee - 0 Aee _I 0 ut R2 Vwo(20)
(R..RL)Y 0 0 0 —I

where Ry = diag{R, Rc.} and u := [ul ul]” is defined as
the input vector. Let us define the error vector of the visual

feedback system as

e=[ct el ]T. (21)

It should be remarked that the actual relative rigid motion
(p, R) tends to the reference (p4, Rq) if e — 0.
Now, let us consider the following control input.
_ [ K 0 ][ -B@p) o0
e I S G
where R, = diag{I, R}. K. and K. are 6 x 6 positive definite
matrices which are called the control gain and the estimation

gain, respectively. B is defined as

so=[ 4 1]

for any vector a € R3.
The result with respect to stability of the closed-loop
system (20) and (22) can be established as follows.

Lemma 1 [4][5] If Vo = 0, then the equilibrium point e = 0
for the closed-loop system (20) and (22) is asymptotically
stable.

Proof:

tion

Let us consider the following positive definite func-

1 : 1 .
V= gllzﬂecll2 + ¢(Ree) + §||Pee||2 +¢(Ree)  (23)

where ¢ := 1tr(I — R) VR € SO(3) is the error function of
the rotation matrix and the following properties hold[10].

1. ¢(R) = ¢(R") >0 and ¢(R)=0 iff R=1
2. §(R) = ep(R)(R"R)" = ex(R)(RR")".
The positive definiteness of the function V' is given by
the property of the error function ¢. Differentiating Eq.(23)
yields

r[ =BT (ps) R:

_ T
0 7 |u= e Ke (24)

V=e

where K is defined as

e [T R[5 22 e

Hence the asymptotic stability can be confirmed. ]

Remark 1 The control input w contains the error vector
e which consists of the vector of the control error e. and
the vector of the estimation error e.. e. is derived from the
proposed nonlinear observer. While, e. can also be obtained

from Eq.(17), Hence we can exploit the control input u.

5 Nonlinear Receding Horizon Control

In this section, we discuss stability of the visual feedback
system via the nonlinear receding horizon control approach.
Our approach is based on a control Lyapunov function and
a corresponding feedback control law. The following lemma

plays an important role in stability analysis performed below.

Lemma 2 If V,,, = 0, then the positive definite function
(23) is a control Lyapunov function for the visual feedback
system (20).

Proof: From Eq.(24), the time derivative of V along the
trajectories to the system (20) can be derived as

inf{V'} = inf { —¢” B'(p)) —R:i ],
{ ife{yéo.o ' ] } (26)

= —00

Hence, the positive definite function (23) is a control Lya-
punov function for the visual feedback system (20). This
completes the proof. ]

Let us consider the Finite Horizon Optimal Control Prob-
lem (FHOCP) for the visual feedback system (20) which is

based on the following cost function
t+T
I(t,e,T,u) = / h(e(r),u(r))dr + pV (e(t +T)) (27)
t

where p € R is positive and pV is a terminal penalty. Let
denote the optimal cost as

J*(t,e,T) = inf J(t,e, T, u). (28)

Now, we propose the following receding horizon optimal

control scheme in order to ensure closed-loop stability.
h(e,u) = e Qe +u" Ru (29)
1
Vet +T1)) = 5llpec(t + D)|* + ¢p(Rec(t + 1))

1 .
+5llpee (8 + T)* + ¢(Ree(t +T))  (30)
e'(t+T)=¢i(t,e,T,u"(t,e,T)) (31)
u'(t,e,T) = arginf J(t,e, T, u) (32)

where @ > 0 and R > 0. V is a control Lyapunov function
which has been proved in Lemma 2. At time ¢, the finite



horizon optimal control problem is solved over [t,¢ + T'] and
the corresponding optimal control law u*(7),t <7 < t+T
is computed.

Then, the optimal control trajectory is set equal to
u*(t,e,T) and the current optimal control law is defined as
uw*(t). At the next time instant, the whole procedure will be
repeated. ¢ is the flow of the vector field along the open-
loop receding horizon trajectory u*(t,e,T). If Viyo = 0, then

we have the following theorem.

Theorem 1 Consider the FHOCP (27) for the visual feed-
back system (20) with the following control law

ukz—Kke (33)
where K, is defined as
_| K O —B(ps) 0
A A

Then the receding horizon optimal control scheme (29)-(32)

is asymptotically stabilizing.

Remark 2 wy is a stabilizing control law for the visual feed-
back system which has been proved in Lemma 1. Note that
the stabilizing control law uy is never actually applied, but it

is just used to compute the end point penalty.

Proof: Our goal is to prove that J*(¢,e,T) will qualify as
a Lyapunov function for the closed-loop system. Let us con-
sider the following sub-optimal strategy over the time interval
[t +0,t+ T + 4]

ﬂ:{ uw (r) TE+06,t+T]

wi(r) TE[t+T,t+T +0] (35)

where uy, is a stabilizing feedback control law for the closed-
loop system (20). Using Eq.(35), J*(t,e,T) can be trans-

formed into
J"(t,e,T)
48
=J(t+6,e*(t+6),T,ﬂ)+/ h(e*,u")dr
t
+olV(e"(t+T) = V(ga(t + T+ 5e" (¢ + T), u)]

t+T+8
—/ h(ds(t+T + 8 " (¢ + T), un), u)dr  (36)
(T

where ¢ is the flow along the feedback control law uy. Since @
is sub-optimal strategy over the time interval [t+6,t+T+4],

J(t+d,e"(t+9),T) < J(t+6,e(t+6),T,u) (37)
holds. Substituting Eq.(36) into Eq.(37) yields

J*(t+676*(t+6)7T)_J*(tae7T)

t+5
—/t h(e™,u")dr
+o[V(g2(t +T + 5e" (¢ + T),u) — V(e"(t + T)]

IN

t+T+38
+/ h(bs(t+T + 0 (¢ + T), ux), un)dr.  (38)
t+T

Dividing both sides of the above equation by § and taking
the limit as 6 — 0, we have

J*(t,e,T) < —e7" Pep — e Qe —u " Ru* (39)
where
P:=pK — Q — Kl RK}.

Here, for the sake of simplicity, e} is defined as e*(t + T).
There exists p > 0 such that P is positive definite. Hence
the total derivative of J*(t,e,T) is negative definite. This
completes the proof. ]

The proposed scheme has employed the cost function as
a Lyapunov function for establishing stability. Our proposed
scheme is based on the control Lyapunov function and the

corresponding feedback control law.

6 Conclusions

This paper has discussed stability for the full 3-D vi-
sual feedback control via receding horizon control approach.
By using the representation of SE(3), we have derived the
model of the visual feedback system. Based on the control
Lyapunov function and the corresponding feedback control
law, we have proposed the stabilizing receding horizon con-
trol scheme for the visual feedback system. The proposed
scheme has employed the cost function as a Lyapunov func-

tion for establishing stability.
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