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Abstract. In this paper, we investigate the vision-based robot motion control problem. The
saturation-type switching controller which attempts to robustly control a robotic system is
proposed. The control goal is to place the robot end-effector over a desired static target by
using the vision system equipped with an eye-in-hand camera. Our design discussed is relying
on the relative motion dynamic model, the error function on the rotational matrix group, SO(3),
the nonlinear observer, and the Euler-Lagrange equations.

We formulate the problem of the 3-D visual feedback control of the rigid motion in SE(3)
which is the product space of R3 with SO(3). In order to measure the distance between the
reference and the actual configuration in SE(3), the error matrix and the error function of the
rotation matrix are used. Since the visual feedback control task requires the information of the
relative rigid motion, the nonlinear observer to estimate the relative motion is proposed. We
prove that the combined system with the nonlinear observer satisfies the passivity property,
which plays an important role in our discussion.

The robust saturation-type switching controller by invoking the passivity of the 3-D visual
feedback system is proposed. We show the practical stability of the designed controller using
the energy function derived from the passivity property. Specifically we derive a robust visual
feedback control law that utilizes an auxiliary saturating controller to compensate for the uncer-
tainty present in the robot dynamics. The novelty of our result lies in the fact that the proposed
controller is able to guarantee the uniform ultimately boundedness for the 3-D visual feedback
control system composed by the manipulator dynamics with parametric uncertainties.

1 Introduction

Vision based robust control of robotic systems involves the fusion of robot kinematics,
dynamics, and computer vision system to control the position of the robot end-effector
in an efficient manner. The combination of mechanical control with visual information
should become extremely important, when we consider a mechanical system working with
targets whose position is unknown, or with manipulators which may be uncertain. Non-
contact sensing is useful in the achievement of many kinds of the robotics tasks. Recent
research efforts toward this direction have been nicely collected in [1].
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This paper deals with the relative rigid motion control of the desired static target
with respect to the camera frame. This control problem is standard and important, and
has gained much attention of researchers for many years [1]. The control objective is to
place the robot end-effector over a desired static target in a three-dimensional workspace,
called SE(3), by the image information. The typical example is shown in Figure 1.
Hence the dynamics of the relative rigid motion is described by the nonlinear systems
on SE(3) introduced in [6]. However few rigorous results have been obtained in terms
of the nonlinear control aspects. For example, there exist no researches that explicitly
show the Lyapunov function for the full 3-D visual feedback systems except the planar
motion types [2]–[5]. Most of these works have been investigated under the assumption
of the exact knowledge of the manipulator dynamics. However the exact manipulator
dynamics is generally not available since the parametric uncertainties inevitably exist in
the manipulator dynamics.

In this paper, we propose the robust saturation-type switching controller for the vision-
based robotic systems with the parametric uncertainties. The main contribution of this
paper is the answer to the above research challenge about nonlinear control aspects. The
proposed controller is able to guarantee the uniform ultimately boundedness for the 3-D
vision-based robotic system with the parametric uncertainties. Since the visual feedback
control task requires the information of the relative rigid motion, the nonlinear observer
to estimate the relative motion also is proposed. We prove that the combined system
with the nonlinear observer satisfies the passivity property, which plays an important role
in our discussion.
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Figure 1: Eye-in-Hand Visual Feedback System

The paper is organized as follows. Section 2 reviews the rigid body motion on the
manifold SE(3), the error function on SE(3). Section 3 introduces the model of the
visual feedback systems. The state equation is the dynamics of the rigid body motion on
SE(3). In Section 4, we formulate the robust visual feedback control problem and propose
the robust saturation-type switching controller. Some comments are finally discussed in
Section 5.
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2 Background and Notation

2.1 Representation of Rigid Motion

A transformation g : R3 → R3 of the 3-D Euclidean space is a rigid body motion if the
distance is preserved between points and the cross product is preserved between vectors.
The action of a rigid body motion is written as

g(q) = Rabq + pab, (1)

where q ∈ R3 is the coordinates relative to the body frame B, pab is the position vector
of the origin of the body frame B from the origin of the inertial frame A. Rab ∈ R3×3

which represents the changes of the principle axes of B relative to the inertial frame A
is orthogonal with unit determinant, such a matrix belongs to a Lie group of dimension
three called SO(3). The configuration space of the rigid motion is the product space of
R3 with SO(3), which should be denoted as SE(3).

SE(3) = {(p,R)|p ∈ R3, R ∈ SO(3)} = R3 × SO(3)

A rigid motion can be composed to form a new rigid motion. Let gab = (pab, Rab) ∈
SE(3) be the rigid motion of frame B relative to frame A, and gbc = (pbc, Rbc) ∈ SE(3)
be the rigid motion of a frame C relative to frame B. Then the rigid motion of frame
C relative to frame A is computed as

gac = gab ◦ gbc = (pab + Rabpac, RabRac). (2)

It is known that SE(3) is a group with the operation ◦. The identity element in SE(3)
is (0, I) and the inverse of g ∈ SE(3) is given by g−1 := (−RT p,RT ).

If gab(t) = (pab(t), Rab(t)) ∈ SE(3) is a curve, then the velocity of that curve is the
element of the tangent space to SE(3) at (pab(t), Rab(t)). The tangent space at (0, I) of
SE(3) is a Lie algebra called se(3). Hence, by left translation, the velocity of the rigid
body can be written as

ṗab = Rabvab, (3)

Ṙab = Rabω̂ab, (4)

where vab ∈ R3 and

ω̂ab :=

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ ,

belong to the set of the skew-symmetric matrices so(3). The vector space so(3) is the
Lie algebra of SO(3) and isomorphic to R3 via the mapping ω̂ab → ωab = [ω1 ω2 ω3]

T .
The velocity (vab, ω̂ab) ∈ se(3) is called as the body velocity. The interpretation of the
components of the body velocity is intuitive: vab is the velocity of the origin of the frame
B relative to the frame A with respect to the current B frame. ωab is the angular velocity
of the frame B, also as viewed in the current B frame. The details of the above review
of the rigid motion is described by Murray et. al. [6].
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2.2 Error Function on SO(3)

This paper discusses the problem of the visual feedback control of the rigid body motion
in SE(3). In order to measure the distance between reference and actual configuration
in SE(3), we introduce the notation of the error function. Let g = (p,R) ∈ SE(3) be
actual configuration and gd = (pd, Rd) be reference. It is clearly that the error function
of the position vector is given by 1

2
‖p − pd‖2. For example, we define the attitude error

as Re = RT
d R. The error matrix Re implies the relative rotation between the actual R

and the reference Rd. Using the error matrix, the error function of the rotation matrix
is then defined φ : SO(3) → R+ as

φ(Re) :=
1

2
tr(I − Re), (5)

and, for any 3 × 3 matrix A, sk(A) := 1
2
(A−AT ). The error function φ has the following

properties.

Property 1 Let R ∈ SO(3). The following properties hold.

1. φ(R) = φ(RT ) ≥ 0 and φ(R) = 0 if and only if R = I .

2. φ̇(R) = eT
R(R)(RT Ṙ)∨ = eT

R(R)(ṘRT )∨, where eR(R) := sk(R) and the operator
‘∨’ extracts the 3-dimensional vector which parameterizes a 3 × 3 skew-symmetric
matrix as follows. ⎡

⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦
∨

=

⎡
⎣ ω1

ω2

ω3

⎤
⎦ .

3. There exist b1 ≥ 1
2
≥ b2 > 0 such that

b2‖eR(R)‖2 ≤ φ(R) ≤ b1‖eR(R)‖2, (6)

for any R ∈ SO(3) which satisfy φ(R) < 1.

These properties are proved in [7].

3 Relative Motion Control Problem with Visual In-

formation

3.1 Relative Motion Dynamic Model

In this section we begin with a model of the visual feedback system which is defined as
a nonlinear dynamical model on SE(3). Throughout this paper, we consider the visual
feedback system as the eye-in-hand system depicted in Figure 1, where Σw represents
the world frame, Σc represents the camera (end-effector) frame, Σo represents the object
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frame, and gxy = (pxy, Rxy) ∈ SE(3) is the rigid body motion from Σx to Σy. Note that
gwo is not directly obtained, and gwc can be calculated from the forward kinematics.

The control task of the visual feedback systems is the calculation of the changes in
the camera’s rigid motion, gwc, required to bring the actually relative rigid motion, gco,
to the reference motion gd = (pd, Rd) ∈ SE(3). First we derive the dynamic model of the
relative motion gco. Using the equation (2) gives the relative rigid motion

pco = RT
wc(pwo − pwc), (7)

Rco = RT
wcRwo. (8)

The equations (3) and (4) give us the following differential equations.

ṗwc = Rwcvwc, (9)

Ṙwc = Rwcω̂wc, (10)

where uc := [vT
wc ωT

wc]
T ∈ R6 is the body velocity of the camera relative to Σw, and we

assume that the target object is static, in other words, the motion of the target object
(pwo, Rwo) is constant. Differentiating (7) and (8) with respect to time are

ṗco = −RT
wcṘwcR

T
wc(pwo − pwc) − RT

wcṗwc,

Ṙco = −RT
wcṘwcR

T
wcRwo,

which lead to

ṗco = −ω̂wcpco − vwc, (11)

Ṙco = −ω̂wcRco, (12)

and then, the above equations are written in matrix form as[
ṗ

(ṘRT )∨

]
=

[ −I p̂
0 −I

]
uc. (13)

Here (p,R) denotes (pco, Rco) for short.

3.2 Camera Model

This subsection derives a pinhole camera model. Let λ be a focal length, poi and pci be
coordinates of the object’s i-th feature point relative to Σo and Σc, respectively. The
equation (1) and the perspective projection of the i-th feature point onto the image plane
give us the image plane coordinate fi as follows.

pci = Rpoi + p, (14)

fi =
λ

zci

[
xci

yci

]
, (15)

where pci := [xci yci zci]
T . It is straightforward to extend this model to the n image points

case by simply stacking the vectors of the image plane coordinate, i.e. f := [fT
1 · · · fT

n ]T ∈
R2n. Then the camera model is expressed by the mapping π : SE(3) → R2n

f = π(p,R), (16)

where π is defined by the equations (14) and (15).
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3.3 Nonlinear Observer of Rigid Body Motion

The visual feedback control task often requires the information of the relative rigid motion
(p,R). However the image information f is only measured in the visual feedback systems.
This paper propose the nonlinear observer which estimates the relative motion. The
nonlinear observer is given by the following differential equation which is similar to the
differential equation of the actually relative rigid motion.[

˙̄p

( ˙̄RR̄T )∨

]
=

[ −I ˆ̄p
0 −I

]
uc +

[
I 0
0 R̄

]
ue, (17)

where (p̄, R̄) is the estimated value of the relative motion, and ue is the estimated input
which is computed from the image position f in order to converge the estimated value
to the actual rigid motion.

We rigorously discuss the stability of the visual feedback control system with the
nonlinear observer (17) based on the dissipation theoretical approach. First, we consider
the state of the visual feedback system as,

(pec, Rec) := (p − pd, RRT
d ), (18)

(pee, Ree) := (p − p̄, R̄T R), (19)

where (pd, Rd) ∈ SE(3) is the time invariant reference of the relative rigid body motion,
(pec, Rec) ∈ SE(3) represents the control error and (pee, Ree) ∈ SE(3) represents the
estimation error. It should be remarked that the actually relative motion (p,R) tends
to the reference (pd, Rd) if (pec, Rec, pee, Ree) → (0, I, 0, I). From the equations (13) and
(17), the state equation is given by⎡

⎢⎢⎣
ṗec

(ṘecR
T
ec)

∨

ṗee

(ṘeeR
T
ee)

∨

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−I p̂ 0 0
0 −I 0 0
0 p̂ee −I 0
0 0 0 −I

⎤
⎥⎥⎦ u, (20)

where u :=
[

uT
c uT

e

]T
. Next we consider the measurement equation from the camera

model (16). If the estimation error is assumed to be small enough that we can let Ree �
I + sk(Ree), the equation (14) then becomes

pci = p̄ci − R̄p̂oieR(Ree) + pee,

where p̄ci := R̄poi + p̄. Further, using the Taylor expansion, the equation (15) can be
written as

fi = f̄i +

[
λx̄ci

z̄ci
0 −λx̄ci

z̄2
ci

0 λȳci

z̄ci
−λȳci

z̄2
ci

]
(pci − p̄ci) (21)

where p̄ci := [x̄ci ȳci z̄ci]
T and f̄i := λ

z̄ci
[x̄ci ȳci]

T . Then an approximation of the nonlinear

function π around the estimated value (p̄, R̄) is given by

f = f̄ + J(p̄, R̄)ee (22)
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where ee := [pT
ee eT

R(Ree)]
T and the matrix J : SE(3) → R2n×6 is defined as

J(p̄, R̄) :=

⎡
⎢⎢⎢⎣

L(p̄, R̄; po1)
L(p̄, R̄; po2)

...
L(p̄, R̄; pon)

⎤
⎥⎥⎥⎦ , L(p̄, R̄; poi) :=

[
λx̄ci

z̄ci
0 −λx̄ci

z̄2
ci

0 λȳci

z̄ci
−λȳci

z̄2
ci

] [
I (−R̄p̂oi)

]
.

Note that the matrix J is same as the image Jacobian which plays an important role in
many researches of the visual feedback control [1]. We make the following assumption
on the image Jacobian.

Assumption 1 For all (p,R) ∈ SE(3), the image Jacobian is full row rank.

Under Assumption 1, the relative rigid motion can be uniquely defined by the image
feature vector1. Moreover it is known that n > 4 is desirable for the visual feedback
control systems. The measurement vector, which is calculated by

y = J †(p̄, R̄)(f − f̄), (23)

where † denotes the pseudo-inverse, which leads to the following measurement equation:

y = ee, (24)

We assume that the quantization and the lens distortion effects are negligible.

Before deriving the visual feedback control algorithm, we show an important lemma.

Lemma 1 The system (20) from the control input u to the output ν

ν :=

⎡
⎢⎢⎣

−I 0 0 0
−p̂d −I 0 0
0 0 −I 0
0 0 0 −I

⎤
⎥⎥⎦ e, (25)

where e := [eT
c eT

e ]T and ec := [pT
ec eT

R(Rec)]
T , is passive relative to the following storage

function.

V (pec, Rec, pee, Ree) :=
1

2
‖pec‖2 + φ(Rec) +

1

2
‖pee‖2 + φ(Ree). (26)

Proof : The positive definiteness of the function V is given by Property 1. Differentiating
(26) with respect to time gives

V̇ = eT

⎡
⎢⎢⎣

ṗec

(ṘecR
T
ec)

∨

ṗee

(ṘeeR
T
ee)

∨

⎤
⎥⎥⎦ . (27)

1It should be noted that the relative motion can not be explicitly calculated because of the high
nonlinearity of the function π.
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Observing that the skew-symmetry of the matrices p̂ec and p̂ee, the above equation along
the trajectories of the system (20) becomes

V̇ = uTν. (28)

We then have

V (t) − V (0) =

∫ t

0

V̇ (τ )dτ =

∫ t

0

uTνdτ. (29)

�

It is well known that there is the direct link between passivity and (internal) Lya-
punov stability. Therefore we derive the following visual feedback control by invoking the
passivity of the system (20).

u = −
[

Kc 0
0 Ke

]
ν = −

[
Kc 0
0 Ke

] [ −B(pd) 0
0 −I

] [
ec

y

]
, (30)

where Kc and Ke are 6 × 6 positive definite matrices called by control and estimation
gains, respectively, and B : R3 → R6×6 is defined by

B(a) =

[
I 0
â I

]
,

for any vectors a ∈ R3.

4 Robust Visual Feedback Control

4.1 Manipulator Dynamics

In this subsection, we will introduce the manipulator dynamics with parametric uncer-
tainties. Since the camera is mounted on the end effector of the manipulator, the control
input uc is given by

Jb(q)q̇ = uc, (31)

where Jb is the manipulator body Jacobian [6]. The velocity of the joints q̇ is not di-
rectly controlled because there exists the manipulator dynamics based Euler–Lagrange
equations. We propose the visual feedback controller with the manipulator dynamics and
construct its Lyapunov function.

Before formulating the visual feedback control problem with the manipulator dynam-
ics, we make the following assumption on the Jacobian Jb.

Assumption 2 The manipulator Jacobian Jb is the nonsingular matrix.
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From Assumption 2, we can consider the visual feedback control problem without the
kinematics problems.

Under the assumption, we obtain

q̇ = J−1
b uc, (32)

where q̇ is the velocity of the joints. However there exists the manipulator dynamics that
relates the input torques to the joints angle velocities

M(q)q̈ + C(q, q̇)q̇ + g(q) = Y (q, q̇, q̈)θ = τ, (33)

where q, q̇, and q̈ are the joints angle, velocity, and acceleration, respectively, τ is the vector
of the input torques, θ ∈ Rm is a constant vector of inertia parameters and Y (q, q̇, q̈) ∈
Rn×m is a matrix of known time functions. We express a nominal model as

M0(q)q̈ + C0(q, q̇)q̇ + g0(q) = Y (q, q̇, q̈)θ0, (34)

where M0(q), C0(q, q̇), g0(q) represent nominal values vis-a-vis to parameter uncertainty
of M(q), C(q, q̇), g(q), respectively. We suppose only that the parameter vector θ is
uncertain by which we mean that there exists θ0 and ρ, both known, such that

‖θ̃‖ := ‖θ0 − θ‖ ≤ ρ. (35)

The joints velocity (32) is regarded as the reference, and the error vector is defined as

ξ := q̇ − J−1
b uc. (36)

Differentiating (36) with respect to time gives

ξ̇ = q̈ + J−1
b J̇bJ

−1
b uc − J−1

b u̇c. (37)

Now we propose the visual feedback controller as follows

τ = uξ + M0(q)(J
−1
b u̇c − J−1

b J̇bJ
−1
b uc) + C0(q, q̇)J

−1
b uc + g0(q)

= uξ + Y (q, q̇, q̇ − ξ, q̈ − ξ̇)θ0. (38)

Substituting the control law (38) into (33) we obtain after some algebra

M(q)ξ̇ = −C(q, q̇)ξ + uξ + Y (q, q̇, q̇ − ξ, q̈ − ξ̇)θ̃, (39)

where uξ is the control input that achieves the control objectives.

We associate the visual feedback control algorithm (20) and (30) with the control
input uξ.

M(q)ξ̇ = −C(q, q̇)ξ + uξ + Y (q, q̇, q̇ − ξ, q̈ − ξ̇)θ̃ (40)⎡
⎢⎢⎣

ṗec

(ṘecR
T
ec)

∨

ṗee

(ṘeeR
T
ee)

∨

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−I p̂
0 −I
0 p̂ee

0 0

⎤
⎥⎥⎦Jb(q)ξ +

⎡
⎢⎢⎣

−I p̂ 0 0
0 −I 0 0
0 p̂ee −I 0
0 0 0 −I

⎤
⎥⎥⎦

[
uc

ue

]
(41)

[
uc

ue

]
= −

[
Kc 0
0 Ke

] [ −B(pd) 0
0 −I

] [
ec

y

]
(42)

y = ee (43)
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Then we derive the following robust 3-D visual feedback control problem with the para-
metric uncertainties for the system (40)–(43).
Robust 3-D Visual Feedback Control Problem : Given ε > 0 and an a priori bound
on the parametric uncertainties, find a control input uξ such that the closed loop system
(40)–(43) satisfies the uniform ultimate boundedness with respect to a small neighbor-
hood of an equilibrium point.

4.2 Robust Visual Feedback Control Algorithm

In this subsection, we propose the following robust visual feedback control law

uξ = −JT
b B(pd)ec −Kξξ + Y (q, q̇, q̇ − ξ, q̈ − ξ̇)us,

usi :=

⎧⎪⎨
⎪⎩

−ρi
(Y T ξ)i∣∣(Y T ξ)i

∣∣ , ∣∣(Y T ξ)i

∣∣ > εi

−ρi

εi
(Y T ξ)i,

∣∣(Y T ξ)i

∣∣ ≤ εi

i = 1, · · · , m (44)

where us ∈ Rm is an auxiliary input vector to compensate for the parametric uncertainty
[8], [9]. Here Y denotes Y (q, q̇, q̇−ξ, q̈− ξ̇) for short. Let (Y T ξ)i denote the i-th component
of the vector Y T (q, q̇, q̇ − ξ, q̈ − ξ̇)ξ and choose positive constants εi, i = 1, · · · , n. We
define a Lyapunov function candidate as

W =
1

2
ξT M(q)ξ +

1

2
‖pec‖2 + φ(Rec) +

1

2
‖pee‖2 + φ(Ree). (45)

A simple calculation shows along the trajectories of the system (40)–(43)

Ẇ = −ξT (JT
b B(pd)ec + Kξξ) + ξT Y (θ̃ + us) +

1

2
ξT (Ṁ (q)− 2C(q, q̇))ξ

+eT
c BT (pd)Jbξ +

[
uT

c uT
e

] [ −B(pd) 0
0 −I

] [
ec

ee

]
= −ξT Kξξ + (Y T ξ)T (θ̃ + us) − eTKe. (46)

where

K =

[
BT (pd) 0

0 I

][
Kc 0
0 Ke

] [
B(pd) 0

0 I

]
.

The differentiating V with respect to time along the trajectories of the system (40)–(43)
gives

Ẇ = −xTQx + (Y T ξ)T (θ̃ + us) (47)

where x = [ξT eT ]T and Q = diag{Kξ, K}. The above discussion leads to the following.

Theorem 1 Given ε > 0 and a bound on the parametric uncertainty ρ for all Kξ, Kc

and Ke which are 6 × 6 positive definite matrices, the closed loop system (40)–(43) and
(44) is uniformly ultimately bounded (u.u.b.) with respect to a small neighborhood B of
the equilibrium point (ξ, pec, eR(Rec), pee, eR(Ree)) = 0.
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Proof : By using Cauchy-Schwartz inequality and an a priori bound on the parametric
uncertainty ρ, differentiating W with respect to time along the trajectories gives

Ẇ ≤ −xTQx +
m∑

i=1

∣∣(Y T ξ)i

∣∣|θ̃i| +
m∑

i=1

(Y T ξ)iusi

≤ −xTQx +

m∑
i=1

∣∣(Y T ξ)i

∣∣ρi +

m∑
i=1

(Y T ξ)iusi. (48)

If (Y T ξ) satisfies
∣∣(Y T ξ)i

∣∣ > εi for all i ∈ {1, · · · , m}, the equation (44) gives usi =

−ρi
(Y T ξ)i

|(Y T ξ)i| . Therefore, differentiating W with respect to time along the trajectories yields

Ẇ ≤ −xTQx. (49)

The error vector x is composed of ξ and e, Q is the positive matrix. Moreover, both ξ
and e are not equal to zero, Lyapunov function candidate (45) satisfies Ẇ < 0.

While, let r(r < m) denote the number of the component of (Y T ξ) which satisfies∣∣(Y T ξ)i

∣∣ ≤ εi, an auxiliary input usi will be

usi = −ρi

εi
(Y T ξ)i (i ≤ r), usi = −ρi

(Y T ξ)i∣∣(Y T ξ)i

∣∣ (i > r).

Therefore we obtain the following inequality.

Ẇ ≤ −xTQx +
r∑

i=1

ρi

∣∣(Y T ξ)i

∣∣ − r∑
i=1

ρi

εi

(Y T ξ)2
i +

m∑
j=r+1

ρj

∣∣(Y T ξ)j

∣∣ − m∑
j=r+1

ρj

(Y T ξ)2
j∣∣(Y T ξ)j

∣∣
= −xTQx −

r∑
i=1

ρi

εi

(∣∣(Y T ξ)i

∣∣ − εi

2

)2

+

r∑
i=1

εiρi

4
≤ −xTQx +

r∑
i=1

εiρi

4
(50)

Let λmin(Q) denote the minimum eigenvalue of the matrix Q, the equation (50) gives

Ẇ ≤ −λmin(Q)‖x‖2 +
r∑

i=1

εiρi

4
. (51)

Lyapunov function candidate (45) satisfies Ẇ < 0 for

‖x‖ >

(∑r
i=1 εiρi

4λmin(Q)

) 1
2

. (52)

From the above discussion, the closed loop system (40)–(43) and (44) is uniformly
ultimately bounded (u.u.b.) with respect to the following small neighborhood B

B(ρ, ε, K,Kξ) :=
{

(ξ, e)
∣∣ ‖x‖ ≤ ω

}
(53)

where x :=
[
ξT eT

]T
, ω =

(∑r
i=1 εiρi

4λmin(Q)

) 1
2

.

�
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5 Conclusion

This paper has derived the design of the robust 3-D visual feedback control law for the
vision-based robotic systems with parametric uncertainties. Specifically, we designed the
saturation-type switching controller that produced uniform ultimately bounded within a
neighborhood of an equilibrium point. Based on the energy function derived from the
passivity property, the practical stability has been performed. By using the nonlinear
observer which satisfies the passivity property, we estimated the relative motion between
the target and the camera.
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