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Abstract

In this paper, we propose a new concept to process the huge information of networked vision

systems. The networked vision systems have potential capability to solve many important problems

such as security monitoring of public spaces. But, the information processing of the networked vision

system is ”computer-power-consuming task”; it is very difficult to retrieve meaningful information

from the data of large size networked vision system. This paper proposes a new simple scheme to

process such huge size data, by getting a hint from information processing of human hearing organ

and insects’ compound eyes. The proposed scheme does not require super computational power,

and the necessary computational power is linearly proportion to the number of vision systems. This

paper also shows some basic experiments to confirm the validity of the concept.

Index Terms

I. INTRODUCTION

The networked vision systems have a potential capability to solve some of our most

important scientific and societal problems such as security monitoring for huge public space.

Such networked system can acquire huge amount of information, but we face to the serious

problems, i.e., how we can handle such huge amount of information and how we can retrieve

our necessary intelligence. Even if distributed data processors assist the computational task

and reduce the network traffic; it might be very difficult for the central processor to rebuild and

to analyze the information of the whole space from the information gotten by decentralized

processing [1].



On the other hand, living things processes information very efficiently. Human being

recognizes voice or sound by an adroit way. In terrestrial vertebrates, sound waves in the

air enter the outer ear, strike the tympanic membrane [2]. The sound waves are converted

to fluid waves in the cochlea by a series of mechanical couplings in the middle ear. The

fluid waves cause vibration of the basilar membrane, on which sit sensory hair cells in the

Corti’s organ [3]. Our brain can recognize the sound or the voice in real time, by which hair

cells are oscillating and how big their magnitude. Namely, our brain retrieves the necessary

information from the sound waves by monitoring the dynamical motions of hair cells. In

other words, each hair cell compresses the information in the allotted frequency band ideally.

The information format is changed from sound to dynamical motion.

There also exists the similar supervisory monitoring in the natural world. Some insects

can recognize flying baits at unbelievable instantaneous moment. They do not have enough

computational power in their brain to execute the image processing. Thus, the hint must lay

in their compound eyes and the consecutive neural network [4]. Each cell of the compound

eyes must send a very simple signal to the neural network; it must not visual image.

We can get two aspects from the natural world.

1) Supervisory Monitoring: The central processor does not treat local data directly; it

retrieves necessary intelligence from Meta data acquired by local agents.

2) Changing Information Category: The central processor does not treat image data di-

rectly; it retrieves necessary intelligence from different kind of physical value, i.e.,

motions of vision cells. Namely, the original data is transformed into a different type

of physical value.

The first aspect may be rather trivial. It is similar to the concept of distributed processing

or decentralized processing; but there are still many difficulties in such processing methods.

The final intelligence can be retrieved only from the merged data. Namely, only by merging

the local data, new synergetic information can be born, which is never appeared in each local

data. Thus, decentralized processing has a limitation; the central processor has to play main

role in any case.

The second aspect is quite new. The process speed of human brain is not so fast, it has

so called ”ten-step limitation;” it can execute only ten lines source code per second. As we

stated above, thanking to such transformation, human being can recognize voices correctly

and insects can capture their baits properly.

Based on such observations, this paper proposes a new concept of networked cellular vision
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Fig. 1. Information flow. Left: Conventional image processing scheme. Right: Proposed scheme with information

transformation. Where VS and CV mean a vision system and a cellular vision, respectively.

processing. In Fig. 1, the left block-diagram shows the information flow of the conventional

image processing and right one shows the new scheme with the information transformation;

where each cellular vision does not send any image data, it send only the data of its

autonomous movement to the central unit. Namely, each cellular vision transforms the image

data to a motion data. This transformation plays the main role of simplifying the processing.

We show examples of the cellular vision system which can recognize movements of a crowd

of people and behavior of microbes.

II. CELLULAR VISION SYSTEM

In this section to elucidate the concept of cellular vision system, we explain it by using a

simple example. The case we concern here is as follows.

A. Basic Structure of the case study

We use conventional CCD cameras with pan, tilt and zooming functions. We configure the

networked sensing system by connecting large number of these uni-modular CCD devices.

Firstly, we show the behavior of the camera model based on the CCD camera. The perspective

projection of a target point onto the image plane, f := [fx fy]
T ∈ R2, is given by the following



equation.

f =
λ

zc

⎡
⎣ xc

yc

⎤
⎦ (1)

where xc, yc and zc represents the target position in x, y and z coordinates of the camera

frame [5]. λ is the focal length of the camera and selected as λ = 480. Let us assume that

each camera is hanging from the ceiling of 3[m] height and watching down vertically. Since

the resolution of each camera is 320× 240 pixels, the camera can watch the area of 2[m] ×
1.5[m] on the floor. We let this area be the responsible monitoring area of the camera. The

camera has two modes: normal mode and 3X-tele-mode (three times closer). Even in 3X-

tele-mode, we like the camera covers the same responsible monitoring area, 2[m] × 1.5[m].

This fact makes another assumption that each camera can change its direction within the

following ranges.

• Pan: −12π/180 ≤ θ ≤ 12π/180 [rad]

• Tilt: −9π/180 ≤ φ ≤ 9π/180 [rad]

Fig. 2 and Fig. 3 shows the intuitive illustrations of the above explanation.

We assume that the target point on the image plane is always available without referring

the image processing. The following is the camera motion of explaining how to track the

target.

1) The initial setting of camera is in normal mode and at the original direction: (θ, φ) =

(0, 0).

2) If a target gets in the image plane, the camera tries to adjust its direction in order to

capture the target at the center of the image plane, or at least within the center area of

range ‖fx‖ ≤ 38 and ‖fy‖ ≤ 50.

3) If the target can be captured in the area of ‖fx‖ ≤ 38 and ‖fy‖ ≤ 50, then the camera

is switched into 3X-tele-mode.

4) From now on, we call that the camera is in tracking mode. The camera tracks the target

with the simple image based feedback control law of u = −K(f − fd). Where f is

the target point, fd is its desired location, usually at the origin and K is a gain matrix.

5) If the camera loses sight of the target, it is switched back to the normal mode.

6) If the target is still in its sight, the camera repeats the motion from 2), if not, it back

to the initial setting 1).
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Fig. 2. Field of view of the camera in the 3D workspace.
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Fig. 3. Camera motion in tele-mode.

If the camera catches many target points, then it selects the nearest one in a sense of

Euclidian norm.

B. Simulation of demonstrating the function

In this simulation, we carry out a simulation of human tracking. We adopt the following

simple dynamics as the basic model of human walking.

mẍ + μẋ = F (2)

where m, μ and F represent mass of the human, friction and force in the human walking,

respectively. x is the position of the human. m and μ are constants which satisfy 57 ≤ m ≤
63 and 4 ≤ μ ≤ 8, respectively. F takes a random continuous variable during [−20, 20]

throughout the simulation. We assume that the human moves independently. Note that the

human motion itself is not important in this paper; the crucial issue to be concerned is to

detect the outlines of such motions by the proposed method.
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Fig. 4. Cellular vision system for square space.

Fig. 5. A simulation scene by VRML Toolbox with Matlab.

We consider a square space as a target monitoring space. We install 17×17 = 289 cameras

at the ceiling of the square as shown in Fig. 4. Since each camera monitors are of 2[m] ×
1.5[m], the total monitoring area is 34[m] × 25.5[m]. Simulations are carried out by using

Matlab and Simulink with VRML(Virtual Reality Modeling Language) Toolbox. Fig. 5 shows

a scene of the simulation made by VRML Toolbox with Matlab. Persons can get in and out

from everywhere of the square space.

Fig. 6 shows the sample human walking motions generated by the same manner as

explained in the former section. There are eight persons walking in the square. The circles

mean their starting points and the crosses represent their locations at the edge of the filed
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Fig. 6. Human motion in square for 60 seconds.
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Fig. 7. Vector map of driving voltage of each camera

or the final time (t = 60) In Fig. 6, the mark ’*’ denotes the camera locations. Each camera

tracks the target walking person autonomously when it gets in the tracking mode. Since each

camera is driven in two directions: pan and tilt, we can acquire these two driving voltages as

the output data of each vision cell. Fig. 7 shows a vector map, where each vector is composed

by these two voltages for each camera.

Since this vector map Fig. 7 almost coincides with Fig. 6, we can conclude that the

generated sample motion is clearly rebuilt by our cellular vision system. From the output of

the cellular vision system, we can easily recognize the situation of the square: how many



persons are walking in the area; how fast they are; which direction they are going to. The

output of the cellular vision system is just the driving voltages of each camera, thus the

amount of data is remarkably small comparing with conventional vision systems. Moreover,

this cellular vision system consists of uni-modular cells, we can easily expand the size of

monitoring area just by adding the uni-modular cells.

III. TRAJECTORY FINDING

As described in the former section, the output vector map of the cellular vision system is

very intuitive for human operators. We can easily imagine the continuous trajectory of the

moving objects from the discrete vector fields. However, we need more systematic way to

determine the trajectory for machine recognition. Each vision cell reports the data of their

motion when it finishes the tracking task. The detail is as follows. As described in the former

section, when the target objects gets in the range, then the vision cell captures the target and

follows it until the target is out of the range. At the timing that the target vanishes, the vision

cell reports the following data to the central processing unit.

• Average 2D velocity vector during the tracking.

• Average time of entry time and exit time.

This reporting is ad-hoc event, thus it is event driven and asynchronous reporting. The central

processing unit rebuilds the trajectories by the following procedure.

A. Initial Setting

The central processing unit has the following data set, which may be null when the whole

system starts.

1) n-trajectories g1(t), g2(t), · · · , gn(t), which are time functions in X-Y plane and they

describe the motions of n objects

2) each trajectory has its basement vector set

Gi =

⎡
⎣ pi(t1) pi(t2) · · · pi(tm)

vi(t1) vi(t2) · · · vi(tm)

⎤
⎦ ,

where, vi(t) is the reported velocity vector at time t and pi(t) is the corresponding

position of the reporting cell. From these vectors, the trajectory is derived by polynomial

approximation. Namely, the trajectory was determined as an approximate polynomial

whose values and gradients are similar to the data set.



B. Ongoing Processing

Let the k-th vision cell reports the average vector vk =

⎡
⎣ vkx

vky

⎤
⎦ and the time t∗. Let

the location of the k-th vision cell be pk =

⎡
⎣ pkx

pky

⎤
⎦. The central processing unit starts to

check the following inequalities to determine whether the new data belong to one of the

trajectories.
∣∣∣∣∣∣∣∣∣∣∣

gix(t
∗) − pkx

giy(t
∗) − pky

d
dt

gix(t
∗) − vkx

d
dt

giy(t
∗) − vky

∣∣∣∣∣∣∣∣∣∣∣

< ε, i = 1, . . . , n (3)

1) YES: If the above inequality is satisfied for j-th trajectory gj(t), then gj(t) and its

data set Gj are revised by the reported data pk and vk, by defining pj(t
∗) = pk and

vj(t
∗) = vk,

Gj =

⎡
⎣ pj(t1) pj(t2) · · · pj(tm) pj(t

∗)

vj(t1) vj(t2) · · · vj(tm) vj(t
∗)

⎤
⎦ .

Based on the above expanded basement data set, the revised trajectory gj(t) is derived

by polynomial approximation.

2) NO: If the above inequality is never satisfied for any trajectory gi(t), (i = 1, . . . , n),

the central processing unit adds one more new trajectory defined as follows.

gn+1(t) =

⎡
⎣ pkx

pky

⎤
⎦ + (t − t∗) ×

⎡
⎣ vkx

vky

⎤
⎦ (4)

And its data is given by defining pn+1(t
∗) = pk and vn+1(t

∗) = vk,

Gn+1 =

⎡
⎣ pn+1(t

∗)

vn+1(t
∗)

⎤
⎦ .

By doing the above procedure, the central processing unit always has new up to date trajectory

set described as mathematical functions.

By using the above stated algorithm, we calculate the trajectories of the moving objects

of the example shown in the section II. We restrict the class of continuous function to 2nd

order polynomial function. The derived trajectories are shown as the solid lines in Fig. 8.

The dashed lines are the actual trajectories of the human motion. Although these lines are

not entirely identical, the estimated trajectories can express normal human motions enough.
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Fig. 8. Estimation for human motion in square.

If we can delete vectors included in the integral sets, from the vector field, the rest is set of

noise vector or unidentified vectors. If the density or quantitative amount of such undefined

vectors is not negligible, that means something unusual may happen. This criteria may be

used for abnormal detection.

IV. EXPERIMENTAL RESULTS

In this section, we show experimental results focused on the supervisory monitoring only.

We consider two simple applications based on the proposed concept. Firstly, the monitoring

of human motion is shown, similar to the simulation in the previous section. Secondly, the

monitoring of microbe behavior is shown. Although the second one is not carried out for a

large monitoring space, it gives us the potential possibility of the proposed concept.

A. Monitoring of Human Motion

Monitoring space is about 14[m] × 18[m] on the campus of Hosei University. Instead of

using many camera devices, we adopt only one wide-range camera and divide its image into

400 (20 × 20) pieces. These pieces are regarded as 400 vision cells for the monitoring space.

Each cell monitors about 0.7[m] × 0.9[m] as shown in Fig. 9.

Fig. 10 shows the actual image sequences of human walking for 17.5[s]. The original

movie can be seen on the Web site [6]. In the interval, there are five people moving from

the right hand to the left, two people walking from left to right, one bicycle running from



Fig. 9. Vision cells with a software approach.

right to left. Fig. 11 and Fig. 12 show the estimated trajectories which can be obtained from

the vector maps. While the walking persons of cheek by jowl are occasionally identified as

one person (as at (a) in Fig. 12), conventional cases are well identified.

We also restrict the continuous function class to the 2nd order polynomials. While we could

derive 8 trajectories, we categorize these eight trajectories into three classes on the base of

the coefficient of the first order terms. These coefficients mean the speed and direction of

the moving objects. The following is the set of the coefficients.

Group1 : {−4.8098,−2.1177,−5.7292,−5.9665,−5.8501}
Group2 : {5.2344, 4.8684}

Group3 : {−10.0095}

Group1 corresponds to the human motion of from the right hand to the left; Group2 means

the motion from left to right. Group3 is faster than the other group. Actually, the group 3

corresponds to the trajectory of bicycle motion.

B. Monitoring of Microbe Behavior

Like the above stated experience, we can encounter the same situation under the micro-

scope. In order to check the possibility to detect the motion of microbes under the microscope,

we tried a very simple experiment. We use a VHX-100 digital microscope with a VH-Z100

lens manufactured by KEYENCE Corporation. In order to catch a microbe by each cell, we
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Fig. 10. Actual images sequence.

divide the available region of its image into 1,122 (33 × 34) pieces as shown in Fig. 13.

The original movie from the digital microscope can be seen on the Web site [6]. Comparing

with the normal human motion, behavior of microbes is little bit complex. Thus, we restrict

the trajectory function class to the third order polynomials.

Fig. 14 shows the estimated trajectories which can be obtained from the vector maps.

These two trajectories represent the motions of microbes fairly well. In this experiment,

the specimen has only two microbes, thus the necessary computer power and resolution of

microscope could be very low. We think that even ordinary setup of the apparatus, we can

detect many microbes’ motions such as sperm activity of mammals.
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Fig. 11. Estimated trajectory with 2nd order polynomial approximation on the monitoring space.
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Fig. 12. Estimated trajectory with 2nd order polynomial approximation in 3D representation.

V. CONCLUDING REMARKS

Although this paper has shown simple cases of cellular vision systems with experimental

results, we can recognize the potential possibility of the idea. The basic concept stated here

may be utilized in various fields of information processing. Especially networked sensing

systems are getting popular in coming several years; it must be crucial issue to process huge

amount of information. The proposed concept may be a key hint to solve these difficulties.

In terms of the cellular vision system with the proposed information processing method,
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Fig. 13. Two microbes on the image from the digital microscope.
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Fig. 14. Estimated trajectories of two microbes with 3rd order polynomial approximation on the monitoring space.

there must be various application fields as follows.

• Security Monitoring for Public Spaces

• Intelligent Transportation Systems (ITS): Surveillance Reckless Driving and Freeway

Traffic

• Air Traffic Management by Radar (Commercial and Military use)

In this cellular vision system, each cell has the same vision camera system with the same



software, i.e., homogeneous structure; we can produce each cell effectively with affordable

cost. Moreover we can increase the number of cells arbitrarily.

Concerning security monitoring for public spaces, we can monitor a huge space for a

surveillance. By using the system, we can monitor a crowd and we can easily find a person

in an interrogatory manner. This case is same as the case of ITS, we can easily recognize

how many cars are running in the specified area and how fast they are running. If a car

behaves in abnormal way, we can immediately point out this phenomenon. If we would

like to control many objects, airplanes, missiles and so on, flying over tremendous area,

monitoring or sensing is absolutely necessary for the controlling. The cellular mini-radar

system with the proposed concept may treat this problem.
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