Periodic Shedding Process of Separated-Flow Cavitation (With Reattached Separation)

佐藤恵一(金沢工大) 齊藤康弘

Keiichi SATO and Yasuhiro Saito

Kanazawa Institute of Technology, Ogigaoka 7-1, Nonoichi, Ishikawa

Many researchers have been studying about high impulsive cavitation. Unsteady shedding type of cavity has high potential for high impulse. Our main interest is in the mechanism of high impact occurrence in internal flow devices. Two kinds of channel profiles are examined about the separated vortex cavitation. One is a circular-cylindrical orifice flow and the other is a convergent-divergent channel flow. Observation of the cavity behavior is preformed in these separated shear layers using a high-speed video camera. As a result, it is clearly observed that a cloud-like cavity sheds downstream with pairing and coalescing of small vortex cavities on the separated shear layer. And it is also ascertained that a reentrant motion of cavity makes an important role on the cavity-shedding periodicity.

Key Words : Cavitation, Vortex cavitation, Erosion, Collapsing motion, Impulsive pulse

1. 緒言

高速液体流れ中において発生するキャビテーションは, 工業的・工学的に重要な問題である.これまで多くの研究 が行われ,キャビテーション・クラウドの放出^{(1),(2)}・非定 常振動と共に高衝撃が発生することが指摘されている⁽³⁾. ついで,この非定常挙動には,少なくとも2つの特徴的な モードがあること,それらがキャビテーション数によって 区分されること,翼形などの迎え角の大小に左右されるこ となど,が明らかにされつつある^{(4),(5),(6)}.

一方,内部流れにおいても,バルブ,ベンチュリなど各 種絞り流路において放出形の渦キャビテーションが問題と なることが知られている⁽³⁾.この場合の対象の多くは,あ る程度厚い(再付着を有する)はく離領域を持ったはく離 渦流れである.著者らはこのような非定常キャビテーショ ンに対応する周期的キャビティ放出挙動を詳細に観察し, 大規模なキャビティの放出過程におけるキャビティのペア リング・合体・成長挙動の存在とリエントラント運動の役 割を指摘し,その機構を明らかにしようと試みてきた ^{(7),(8),(9)}.本報告では,一連の研究で観察された特徴的なキ ャビテーション・クラウドの放出挙動を紹介する.

2. 実験装置および方法

実験は小形密閉回流式キャビテーションタンネルを用い て行われた.実験は2種類の流路を用いて行われた.まず, 1つ目の試験流路部は直径D=80 mmの円形断面を持ってお

Fig.1 Details of test section

り,そこに図1に示されるようなd=22 mm,長さL=100 mmの入り口丸みのない円筒オリフィスが取り付けられている.試験部は透明アクリル樹脂製で外側から光学的様相 観察が可能となっている.絞り部の端面から上流および下流20 mmの位置にそれぞれ圧力孔が設けられている.

2つ目は、図2に示されるような80×60mmの長方形断面 の試験部における入口角度45°,出口角度18.4°,高さ H=40mmの収縮拡大流路である.スパン方向の観察を行う 際には図3に示されるような高さH=30mmのものが用いら れた.ここで、流路拘束比は双方とも1/2である.

様相観察は主に高速度ビデオカメラ (KODAK EXTAPRO MODEL4540, 最高フレーム速度40500 fps: frames per second)を用いて行われた.本研究における高

(a) Side View (b) Cross Section Fig.2 Convergent and divergent channel (side-view)

速度ビデオカメラの撮影速度は主に9000および13500 fps である.

キャビテーション可視化実験は流速を一定に保ち,タン ネル全体の静圧をゆっくり変化させ,所定のキャビテーシ ョン数に設定した後に行われた.本論文で用いられるキャ ビテーション数σそしてレイノルズ数Re_tは以下のように 定義された.

円筒オリフィス:							
$\sigma = (P_2 - P_v) / (P_1)$	_	P ₂)	•	•	•	•	(1)
$Re_t = U_t \cdot d / v$	•		•	•	•	•	(2)

収縮拡大ノズル:

σ = (P_{∞} – P_{v}) /	$ ho$ U 2		•	•	•	•	(3)
$\operatorname{Re}_{t} = \operatorname{U}_{t} \cdot \operatorname{H} / \gamma$		•••	•	•	•	•	(4)

ここに、 P_1 , P_2 はそれぞれオリフィス上流および下流点 の静圧、Pv、vおよび ρ はそれぞれ試料水の飽和蒸気圧、 動粘度および密度、そしてUおよびU_tは一様流および絞り 部の平均流速である.また P_{∞} は試験部上流の一様流部の 静圧、試料水の温度および溶存酸素量をそれぞれTw、 β 、 そして高速度ビデオのフレーム速度をFsで表す.

3. 結果および考察

3.1 円筒オリフィスにおけるはく離渦キャビテーション 図4 は高速度ビデオカメラによって13500fpsで観察されたキャ ビティ様相を示す.観察位置はオリフィスのど部入り口付 近である.様相は衝撃がピーク値を示し明瞭に放出が観察 されるキャビテーション数 σ =0.94^{(7),(8)}の様相である.図 中の白い部分がキャビティを示している. Frame No.-20~No.24でキャビティ放出のほぼ1周期を示 している. クラウド状のキャビティが放出され崩壊してゆ く様子が観察される. ここで, No.0はトリガ信号検知時の フレームである. 衝撃は放出されたクラウド状のキャビテ ィが崩壊するとき計測された. キャビティ崩壊後, 新たな キャビティの放出が始まる (No.12~No.24). このような 挙動は周期的に繰り返される. このとき放出の周期は約

Fig.4 Cavity collapsing and shedding behavior in the throat of the circular cylindrical orifice

 σ =0.94, Tw=292K, Re_t=2.06x10⁵, β=5.6 mg/ ℓ , Fs=13500fps, U_t=9.65 m/s Fig.5 Behavior of cavity shedding and re-entrant motion

Fig.6 Sectional view of small vortex cavities with laser sheet method

260Hzと評価され,キャビティ長さそして縮流部平均流速 に基づいたストローハル数は0.36であった⁽⁸⁾.また円筒オ リフィス入口端面にトリッピングワイヤを取り付けた場合, σ=0.83のとき衝撃のピーク値をとり,そのときのキャビ ティ放出周波数は約365Hz,同様にストローハル数は0.49 であった⁽⁸⁾.

3.2 円筒オリフィスにおけるクラウド状キャビティの放出過 程 次に、クラウド状キャビティすなわちキャビテーシ ョン・クラウドの放出挙動を詳細に観察した例を図5に示 す. 試験部上下方向から照明を当て、キャビティ底部の観 察を行った. Frame No.6以後は上半分の様相のみを示す. また、図6にレーザシートを用いてキャビティの断面の挙 動を観察した結果を示す.観察位置は図4と同様のオリフ ィスのど部入り口付近である.これらの図5よりキャビティ 放出のメカニズムは以下のようになる.

まず、キャビティ放出後、Frame No.6付近で付着キャビ ティの後端にリエントラント運動が始まる.その後、リエ ントラント運動は上流方向へ向かい(Frame No.10~22)、 Frame No.24程度でキャビティ前縁に達していると考えら れる.このときリエントラント運動の平均速度Urは $U_r=10.8m/s$ と評価され、この値はオリフィスのど部平均流 速 $U_t=9.65m/s$ とほぼ等しい速度となった.

リエントラント運動がキャビティ前縁に到達直後の Frame No.24には、剥離せん断層上に新たに生じたと思わ れるものを含め、数個の微小渦キャビティが認められる. ここでは少なくとも3つの渦キャビティがはく離せん断層 上に観察された.これらの渦キャビティは合体・成長しな がら下流方向へ移動してゆく.

その様相はレーザシート法を用いることにより,図6に 示すようにキャビティの挙動をさらに明瞭に捕らえること ができる.リエントラント運動がのど部前縁付近に到達後 に剥離せん断層上に形成される微小渦キャビティには,既 存の大きなキャビティと合体し一体のキャビティとして直 後に下流へ放出されるものと(図5,6中のキャビティ①,②),すぐには下流側に放出されず,それ以降に生じるキャ ビティと合体しながら成長するもの(図5,6中のキャビテ

in a convergent-divergent channel

ィ③)の2種類あることが観察される.前者のキャビティ は下流に放出され大きく崩壊し衝撃を発する.後者のキャ ビティはある程度の大きさになるまで成長するが,前者に 関連する大きなキャビティがクラウド状気泡群(キャビテ ーション・クラウド)として放出されると成長が停滞し, その底部に新たなリエントラント運動を呈する.リエント ラント運動そのものに関する結果は翼形や絞り流路のキャ ビテーションに関する研究^{(10),(11)}と符合する.

3.3 収縮拡大(矩形)流路におけるはく離渦キャビテーション の挙動 図7に衝撃ピーク付近の断面方向のキャビティ 全体様相を示す.高速度ビデオカメラを用いて9000fpsで 撮影された⁽⁹⁾.はく離せん断層で生じた渦キャビティが大 きく成長し放出されていく様子が確認できる.また,この とき新たな付着型キャビティの発達が観察される(No.-400~No.-200).その後,放出されたキャビティが下流で 激しく崩壊する時(No.-10~No.0),高衝撃が計測された. またキャビティ崩壊後,リバウンド挙動を示していること も確認される(No.30~No.100).

図8に、図7に示されたものと同じ条件において流路絞り 部近傍の渦気泡挙動を詳細に観察した結果を示す.円筒オ リフィスの場合と同様のキャビティ成長機構が捕らえられ ている.はく離せん断層上には少なくとも3つのキャビテ ィが生成されている(図8のA,BおよびC).これらのキ ャビティにおいて、AとBのキャビティがペアリング挙動 を示し(No.25)、その後合体し(No.45)、そして下流に 放出される.このような特徴的なキャビティ成長・放出過 程は図5.6に示される円筒オリフィス内のキャビティ挙動 でも観察されている.

次に、図9にはスパン方向のクラウド放出様相を観察した様相を示す.図中の直線①~④はキャビティの移動に合わせて引いたものである.これからキャビティの放出はほぼ一定の速度であること,直線がほぼ等間隔であり周期的に放出されていること,小渦キャビティ(サブキャビティ)との合体が生じていること,などが観察される.

例えば図9の③のキャビティにおいて代表的に示される ように各キャビティが③'のサブキャビティと合体し(Frame No.900~No.1100)大きく成長しながら放出され る様子が、このようなスパン方向からも明瞭に観察される.

Fig.8 Behavior of small vortex cavities in a convergent-divergent channel

4. 結言

2種類の内部流れ場形状を用い、はく離形キャビテーションの挙動観察を行った.

(1) 円筒オリフィス内部流れそして収縮拡大ノズル流れ の両流れ場においてキャビテーション・クラウドの周期的 な放出が観察された.

(2) キャビテーション・クラウドは、その発達過程において小渦キャビティのペアリングそして合体挙動を伴いながら成長・放出され、衝撃を発する.

(3) クラウド放出後,上流方向に向かうキャビティ底部 のリエントラント運動が観察され,これがクラウド放出の 周期性に重要な働きを示すと考えられる.

文献

(1) Knapp, R. T., Recent Investigations of the Mechanics of Cavitation and Cavitation Damage, Trans. ASME, Vol. 77, (1955), pp. 1045–1054.

(2) Kubota, S., et al., Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique, Trans. ASME, J. Fluids Eng., Vol. 111, (1989), pp. 204-210.

(3) Hutton, S. P., Studies of Cavitation Erosion and its Relation to Cavitating Flow Patterns, Int. Symposium on Cavitation, Sendai, (1986), p.21-29.

(4) 佐藤光太郎, ほか3名, 平板翼に生じる振動キャビテーションの観察, 機論, 65-639, B (1999), pp. 3659-3667.

(5) Kjeldsen, M., et al., Spectral Characteristics of Sheet/Cloud Cavitation, Trans. ASME, J. Fluids Eng., Vol. 122, (2000), pp. 481-487.

(6) Le, Q., et al., Partial Cavities: Global Behavior and Mean Pressure Distribution, Trans. ASME, J. Fluids Eng.,

Fig.9 Periodic shedding behavior of cavitation cloud and the coalescence process (span-view)

Vol. 115, (1993), pp. 243-248.

(7) 佐藤恵一,ほか4名,軸対称剥離流れにおける衝撃性気泡の挙動(円筒オリフィス内流れ),日本学術会議 キャビテーションに関するシンポジウム(第10回), (1999), pp.145-148.

(8) Sato, K. and Saito, Y., Unstable Cavitation Behavior in a Circular-Cylindrical Orifice Flow, Fourth Int. Symp. on Cavitation - CAV2001, Pasadena, (2001), A9-003, pp. 1-8.

(9) Sato, K., et al., Observations of Unsteady Separated-Type Cavitation in Convergent-Divergent Channel, The 3rd ISMTMF, Fukui, (2001).

(10) Kawanami, Y., et al., Mechanism and Control of Cloud Cavitation, Trans. ASME, J. Fluids Eng., Vol. 119, (1997), pp. 788-794.

(11) de Lange, D. F., et al., On the Mechanism of Cloud Cavitation – Experiment and Modelling – , Proc. Second Int. Symp. on Cavitation, Tokyo, (1994) , pp. 45-49.